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Abstract

Heston and Nandi (2000) provide considerable empirical support for their GARCH option pric-

ing model. Their model has the advantage that analytical solutions are available for pricing

European options. This article takes a closer look at this model and compares its performance

with the NGARCH option model of Duan (1995). We con¯rm Heston and Nandi's ¯ndings,

namely that their model can explain a signi¯cant portion of the volatility smile. However, we

show that the NGARCH model is superior in removing biases from pricing residuals for all

moneyness and maturity categories especially for out-the-money contracts. The out-of-sample

performance of both GARCH models is closely examined, and the NGARCH model is shown to

have very attractive properties. The NGARCH model continues to perform well, even when the

parameters of the model are not re-estimated for long periods of time. Given the existence of rel-

atively e±cient algorithms for pricing American claims and exotics under NGARCH processes,

we recommend that traders and risk managers consider the NGARCH model.



There is overwhelming empirical evidence that return innovations in stocks in°uence future

volatilities. For example, large absolute returns are more likely to be followed by large absolute

returns, with volatility being persistent. In addition, if the news is bad, volatility expands

more than if the news is good. This implies that there is a negative correlation between as-

set return innovations and volatility innovations.1 These time series properties of volatility are

important features that should be captured in models that specify the dynamics of prices over

time. This feedback e®ect between returns and volatility is also important to capture in option

pricing. Duan (1995) shows how this can be accomplished by pricing options under GARCH

processes that have this property. Indeed, computing option prices under GARCH processes

is now very well understood. Unfortunately, analytical solutions for prices of options are not

generally available and hence numerical procedures have to be invoked. E±cient martingale

simulation methods have been developed by Duan and Simonato (1998) for pricing European

claims. Duan and Simonato (2000) and Ritchken and Trevor (1999) also develop numerical

schemes for pricing American claims. Finally, Heston and Nandi (2000) (hereafter, HN) have

developed \closed form" solutions for European options under very speci¯c GARCH like volatil-

ity updating schemes and Duan, Gauthier and Simonato (1999) have established analytical

approximations for the NGARCH process.

The importance of GARCH option pricing has recently expanded due to their linkage with

stochastic volatility models. Indeed, even if one ¯nds GARCH models a bit mechanical, the

methodology is useful since their di®usion limits contain many well known stochastic volatility

models.2 From an estimation perspective, GARCH models may have distinct advantages over

stochastic volatility models. Continuous time stochastic volatility models are di±cult to imple-

ment, because, with discrete observations on the underlying asset price process, the volatility

is not readily identi¯able. If the volatility level cannot be established, option prices cannot

be computed. To overcome this problem implied volatilities are often established from concur-

rent option prices. Indeed, a common technique for estimating stochastic volatility models, as

adopted by Bakshi, Cao, and Chen (1997) for example, is to use a cross section of option data

to estimate all the parameters, including volatility, on a daily basis. If the parameters of the

process are required to be constant through time, then a time series of daily option records are

used in the analysis and a daily sequence of implied volatilities has to be estimated. Since the

number of unknown volatilities increases linearly with the number of days, the computational

e®ort involved in the optimization problem soon becomes severe. This approach has been used

by Bates (1996) and Nandi (1998), for example. In contrast, GARCH models have the advantage

that the volatility is observable from the history of asset prices. Consequently, it is possible to
1For discussions on these features see Black (1976), Bollerslev, Chou and Kroner (1992), and Engle, and

Ng (1993), for example.
2Duan (1996, 1997), Corradi (2000) and Nelson (1990), provide details on the relationships between univariate

GARCH models and bivariate stochastic volatility models.
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price options, solely on the basis of observable history of the underlying asset process, without

requiring information on derivative prices. As a result, option prices can be generated in illiquid

markets where concurrent information on derivative prices may not exist. In addition, as em-

phasized by HN, with GARCH models, only a ¯nite number of parameters need to be estimated

irrespective of the length of the time series, thereby considerably simplifying the estimation

procedure.

HN perform extensive empirical tests that provide convincing support for their model. In

particular, they show that their model provides a substantial improvement over the ad-hoc Black

Scholes model of Dumas, Fleming and Whaley (1998) that uses a separate implied volatility for

each option to ¯t the volatility \smile". In contrast, previous empirical tests, conducted by

Dumas et. al., showed that the implied binomial tree-deterministic volatility models were out-

performed by the ad hoc Black Scholes model. HN conclude that the improvements provided by

their model is due to the ability of their model to capture the correlation of volatility with re-

turns and the path dependence in volatility. Their results bring GARCH models to the forefront

of viable pricing models.

The primary purpose of this paper is to further examine the empirical performance of the

HN model and to compare this model to Duan's (1995) NGARCH option model. We are

keen to establish if the HN model dominates the NGARCH model. If the HN model does

dominate Duan's NGARCH model, then it might be worthwhile to design specialized algorithms

for pricing American options and exotics under the HN speci¯cation. However, if the model has

some shortfalls, then the fact that it o®ers closed form solutions may not be that signi¯cant,

especially given the fact that there are analytical approximations for European contracts for the

NGARCH model and relatively e±cient pricing mechanisms exist for pricing American claims for

most GARCH processes. The paper proceeds as follows. In section 1 we discuss the two GARCH

option models. In section 2 we describe the experimental design for evaluating the performance

of the two models. We carefully describe the data and discuss the pricing methodology that we

use in the study. We especially focus on the computational issues used to generate the option

prices. In section 3 we present the empirical results, and section 4 concludes.

I The Option Pricing Models

(a) Duan's NGARCH Model

Let St be the asset price at date t, and let ht be the conditional volatility of the logarithmic

return over the period [t; t+1], which is a day. The dynamics are assumed to follow the process:

ln
St+1

St
= rf + ¸ht ¡

1

2
h2
t + ht²t+1 (1)
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h2
t+1 = ¯0 + ¯1h

2
t + ¯2h

2
t (²t+1 ¡ °)2 (2)

where rf is the risk free rate, ¸ is the unit risk premium for the asset, ²t+1 is a standard

normal random variable, and ° is a nonnegative parameter that captures the negative correlation

between return and volatility innovations. To ensure that the conditional volatility stays positive

¯0, ¯1 and ¯2 should be nonnegative.

Under suitable preference restrictions, Duan (1995) has derived the following risk neutral

probability measure under which discounted claims are martingales:

ln
St+1

St
= rf ¡

1

2
h2
t + htºt+1 (3)

h2
t+1 = ¯0 + ¯1h

2
t + ¯2h

2
t [ºt+1 ¡ !]2 (4)

where ! = ° + ¸ and ºt+1 is a standard normal random variable.

The above option model has four parameters, ¯0, ¯1 and ¯2 and ! that need to be estimated,

together with the initial volatility, h0. If time series information is to be incorporated as well,

then the additional parameter ¸ can be identi¯ed.

(b) Heston and Nandi Model

Heston and Nandi postulate the following dynamics:

ln
St+1

St
= rf + ¸h2

t + ht²t+1 (5)

h2
t+1 = ¯0 + ¯1h

2
t + ¯2(²t+1 ¡ °ht)2 (6)

The process is stationary with ¯nite mean and variance if ¯1 +¯2°2 < 1. The variance updating

equation is similar to the NGARCH model, with the biggest di®erence being the fact that the

¯2 term is not multiplied by the local variance. That is, the last term is determined to a large

degree by the normalized residual, rather than the residual.

For pricing purposes, the risk neutralized measure is given by

ln
St+1

St
= rf ¡

1

2
h2
t + htºt+1 (7)

h2
t+1 = ¯0 + ¯1h

2
t + ¯2[ºt+1 ¡ !ht]2 (8)

where ! = ° + ¸+ 1
2 .

Heston and Nandi show that, for this particular structure, the moment generating function

of the logarithmic price at date T takes on a log linear form. As a result risk neutral probabilities

can be computed and European call option prices can be computed. Like the previous model,

for purposes of option pricing, there are 4 unknown parameters in this model, together with the

initial local volatility.
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II Experimental Design

In this section we describe the option data, discuss the estimation methodology and lay out the

types of analysis that are performed. Since option data are used to extract out parameter values,

non linear optimization methods are invoked that require large sets of option contracts to be

frequently repriced. As a result, a high demand is placed on the pricing routines and e±cient

schemes are crucial. We therefore discuss the numerical pricing mechanism that we adopted in

some detail.

II.1 Description of Data

The S&P500 index options are European options that exist with maturities in the next two

calendar months, and also for the time periods corresponding to the expiration dates of the

futures. Our price data on the options covered the ¯ve year period from January 1991 to

December 1995. We collected data on Wednesdays and excluded contracts with maturities

fewer than six days. We only used options with bid/ask price quotes during the last half hour

of trading. For these contracts we also captured the reported concurrent stock index level

associated with each option trade.

In order to price the call options we need to adjust the index level according to the dividends

paid out over the time to expiration. We follow Harvey and Whaley (1992), and Bakshi, Cao

and Chen (1997), and use the actual cash dividend payments made during the life of the option

to proxy for the expected dividend payments. The present value of all the dividends is then

subtracted from the reported index levels to obtain the contemporaneous adjusted index levels.

This procedure assumes that the reported index level is not stale and re°ects the actual price

of the basket of stocks representing the index. Since intra day data and not the end of the day

option prices are used, the problem with the index level being stale is not severe.3 Since we used

the actual contemporaneous index level associated with each option trade that was reported in

the data base, the actual adjusted index level would vary slightly among the individual contracts

depending on their time of trade. We normalize all option and strike prices so that the adjusted

index price is exactly $1 for every contract. This transformation is helpful, since all contracts

can now be priced relative to the same constant underlying price. Finally, we used the T-Bill

term structure to extract the appropriate discount rates.
3There are other methods for establishing the adjusted index level. The ¯rst is to compute the mid points of

call and put options with the same strikes and then to use put-call parity to imply out the value of the underlying

index. Of course, this method has its own problems, since with non negligible bid ask spreads, put call parity only

holds as an inequality. An alternative approach is to use the stock index futures price to back out the implied

dividend adjusted index level. This leads to one stock index adjusted value that is used for all option contracts.

For a discussion of these approaches see Jackwerth and Rubinstein (1996).
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II.2 Estimation

It is possible to use the time series of the underlying S&P 500 index to establish the maximum

likelihood estimates for all the parameters for both models. However, such an analysis ignores

the information content of the option prices that complement the time series of underlying prices.

In our analysis we wanted to incorporate the time series properties of prices, together with the

cross sectional information provided by option prices.

Our objective function and methodology is similar to Bakshi, Cao and Chen (1997), Dumas,

Fleming and Whaley (1998), and others, who minimize the sum of squared errors between

theoretical and actual prices using a non-linear least squares procedure. These studies have

been conducted in the context of continuous time stochastic volatility option pricing. Since our

underlying process is a GARCH process, our exact methodology is similar to Heston and Nandi,

and is brie°y reviewed.

In a GARCH setting there are two state variables, namely the underlying asset price and the

local variance. The fact that the local variance is determined by the history of asset innovations

makes this problem considerably easier to solve relative to the estimation problems of continuous

time stochastic volatility models.4

Let ei;t represent the di®erence between the model price and the actual price of contract i

at date t. Heston and Nandi use the following criterion function:

Minimize SSE(µ) =
TX

t=1

NtX

i=1

e2i;t

Here, T denotes the number of weeks (Wednesdays) in the sample, Nt is the number of options

traded on the Wednesday of week t, and µ represents the parameter set, µ = f¯0; ¯1; ¯2; ¸; °; h0g.
Notice that in order to price options under a speci¯c parameter set, for each week we need

to have values for the two state variables. The asset price is known, but the local volatility has

to be determined from its value at the end of the previous week. Its new value will depend

on the daily innovations of prices over the past week. Given the sequence of daily moves,

the volatility updates can be performed, and the time series for the second state variable is

determined, conditional on its beginning week value. The initial value for h0 enters the analysis

as a parameter to be optimally determined from the data.

We split up each year of our 5 years of data into two 6 month intervals, this giving us 5

non overlapping data sets. For each of these data sets we use the time series of daily asset

prices, together with weekly option prices, to estimate the parameters using the minimum sum
4For discussions on some stochastic volatility models and issues of estimating parameters see Andersen and

Lund (1997), Bakshi, Cao and Chen (1997), Heston (1993), and Hull and White (1987). Heston and Nandi (2000)

provide convincing arguments in favor of GARCH models over continuous time stochastic volatility models.
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of squares principle.

Given the parameter estimates, together with the initial volatility, we use the daily time series

of actual index prices to generate a daily time series of local volatilities over the entire year.

Given, the index and local volatility at each week, theoretical option prices can be generated

and compared with actual option prices. Over the ¯rst 6 months of each year, the residuals

we generate are referred to as in-sample residuals. However, over the last 6 months of each

year, the theoretical prices are based on parameter estimates that have not used information

on concurrent option prices. Since these theoretical prices do not use any option information

over the last six months, these residuals are referred to as out-of-sample residuals. We therefore

obtain 5 sets of parameter estimates, 5 sets of in sample residuals and 5 sets of out-of-sample

residuals. The residuals from our two GARCH models can be examined to identify whether a

strike price bias or a maturity bias exists. The residuals can also be compared with each other.

Our benchmark model is the Black Scholes model. The Black Scholes residuals are generated

each week by identifying the volatility as the number that minimizes the sum of squared errors

of all option prices that are available at that date. The residuals generated by the Black Scholes

model in all weeks are in-sample residuals that use the concurrent option data to establish an

optimal implied volatility. We emphasize that over the last 6 months of each year our GARCH

models do not use any option data to estimate parameters, whereas the Black Scholes model

uses all the option data each week to estimate the best volatility. By comparing the \in sample"

residuals from Black and Scholes with the \out of sample" residuals of the GARCH models, we

are requiring a higher hurdle for assessing the performance of our GARCH models.5

II.3 Computational Schemes

The optimization problem encountered in each of the in sample problems is highly nonlinear in

the parameter values, and is a non trivial problem to solve. Since there are no analytical solutions

for the gradient, numerical optimization techniques have to be used that require hundreds, if not

thousands of function evaluations. Since each function call requires large sets of option prices

to be computed, we need an e±cient scheme for pricing.

At a given date, t, we have a collection of call option contracts. Let Ci, be the price of

contract i, with strike Xi, and maturity, Ti, where i = 1; 2:::;Nt. Let Gi be the dividend

adjusted index for the ith contract. For contracts that have the same maturity the Gi values
5It is well known that the Black Scholes model produces large errors in pricing. Indeed, HN compare their

GARCH model to an ad-hoc Black Scholes model that uses a separate implied volatility for each option, as in

Dumas, Fleming and Whaley (1998). HN show that their GARCH model produces substantially smaller out-of-

sample residuals than the ad-hoc model. Our primary reason for presenting the simple Black Scholes residuals

will be to give some sense of the magnitude of improvement that GARCH models have over Black Scholes.
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will typically be close, if not identical. As discussed earlier, since option contracts do not all

trade at the same time, the underlying index prices might not be identical. As a ¯rst step, we

recognize that options are homogeneous of degree 1 in the underlying price and strike. Hence,

for computational purposes, we normalize all the prices so that the underlying price is exactly

1.

We then use simulation to price the contracts. Since the initial price of the underlying is the

same for all the contracts, we can generate one path over time, and at the appropriate expiration

dates, compute the exercise value of all the terminating contracts. Thus, each path gives rise

to Ni option prices. After K paths are generated we have all our option prices. Simulation is

particularly attractive when the number of contracts is large. In our case, on each Wednesday

we typically have over 30 contracts. To reduce the standard errors, we used a control variate

method. In particular, we used Duan and Simonato's (1997) e±cient martingale simulation

method. This method generates all K paths at once, and adjusts the sample paths so that the

sample process is a martingale. Among other things, this ensures that the computed call and put

values satisfy put call parity. We used 5000 replications in our pricing module. Before selecting

this number we performed extensive computational tests, and for a wide array of parameter

values we concluded that 2000 replications produced tight enough con¯dence intervals for the

true prices.

While there is a question that a small bias in results could result from using a small number

of sample paths, we wanted to ensure that the bias in prices were the same for both models. To

accomplish this the sequence of random numbers used in both the Duan and HN models were

identical. In this regard, the experimental results are performed under identical conditions.

An alternative approach would have been to use a computational scheme like Ritchken

and Trevor (1999) or Duan and Simonato (2000) to price European claims. Their algorithms

are extremely useful for pricing American claims, when the parameter values are reasonable.

However, in the search for an optimal set of parameters, our experience has been that certain

con¯gurations of parameters can cause the algorithms to slow down considerably. We found

the simulation procedure to be much more e±cient and robust than using other computational

schemes. In addition, using di®erent numerical procedures for pricing HN and NGARCH models,

results in additional errors in the analysis. To the extent that we have used common streams of

random numbers for pricing HN and NGARCH models, the biases in prices will be common.

III Empirical Results

Both the HN model and the NGARCH model have 6 unobservable values, including the 5

parameters, ¯0, ¯1, ¯2 !, and ¸, as well as the initial local volatility, h0. In our ¯rst optimizations,
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we found that the surface was fairly °at around the optimal solution, and estimates of the

parameters could °uctuate widely, without signi¯cant improvement in the SSE. By assuming

the market price of risk, ¸, to be zero, lead to very little change in the objective function. As a

result, in what follows, we report the results when our optimizations were conducted over the 5

remaining values.

Table 1a reports the parameter estimates for the HN Model for each of the 10 six month

periods, from January 1991 to the last 6 month period in 1995. Table 1b shows the same results

for the NGARCH model. For both models we report the estimates of the 4 parameters, namely

¯0, ¯1, ¯2 and !, as well as the implied estimate of the initial local volatility, h0. Our results for

the HN model are generally in the same range as those established by HN. For example, their

parameter estimates were b0 = 5:02E ¡ 06, b1 = 0:58, b2 = 1E ¡ 06 ! = 421, and the market

price of risk, ¸ was not signi¯cant.

Insert Tables 1a and 1b Here

The tables also report the stationary volatility, and the ¯nal local volatility that exists at the

end of the period. The long run stationary volatility estimates produced by both the NGARCH

model and the HN model appear to be very stable, not deviating too far from about 17% per

year. Figure 1 shows the time series of these \local" volatilities for each year. The parameters

for the process are estimated using the ¯rst six months of data, and then these values are used

with the actual daily time series of the index to generate the local volatilities over the entire

year. The time series produced by these two models over each of the 5 years are shown in the

¯rst two panels of Figure 1. In most years the time series of local volatility in the NGARCH

model appears to be less volatile than in the HN model. The third panel in Figure 1 shows the

time series of implied volatilities obtained by minimizing the sum of squared errors in option

prices using the Black Scholes model for each of the 52 weeks in the year. This time series is

the least volatile.

Insert Figure 1 Here

Since our primary goal is to investigate the performance of our two GARCH models in pricing

options, we now turn attention to examining the residuals associated with our models.

In what follows we de¯ne moneyness as M = (St ¡ X)=St, where X is the strike price.

Deep-out-the money options are de¯ned as M < ¡0:04; out-the-money contracts are de¯ned as

¡0:01 < M · 0:04; at-the-money contracts have ¡0:01 < M · 0:01; in the money contracts

have 0:01 < M · 0:04, and deep in the money contracts have M > 0:04. Expiration dates

are bucketed into 3 groups: near term contracts have maturities between 10 and 45 days; mid

term contracts have maturities between 46 and 90 days; and long term contracts have maturities
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between 91 and 200 days. Residuals are computed as theoretical prices less actual prices. Unless

stated otherwise, all contract prices have been normalized so that the underlying asset price is

$1:0.

All the residuals over the in-sample periods are ¯rst analyzed to assess whether the models are

misspeci¯ed. Figure 2 shows box and whisker plots for residuals generated by the three models

categorized by moneyness and maturity. If there were no systematic biases in the models, the

residuals should be centered around zero, for each moneyness-maturity category.

Insert Figure 2 Here

The plots reveal large volatility skew and smile patterns associated with the Black Scholes

model. The biases for this model are particularly large on average. In particular, on average,

deep in-the-money contracts are priced too low and deep out-the-money contracts are priced

too high with the bias increasing, in raw dollar terms, with maturity. That is, on average,

at-the-money and out-the-money Black Scholes option prices are higher than actual prices while

deep in-the-money contracts are priced too low.

The box and whisker plots clearly reveal that the two GARCH models remove a signi¯cant

fraction of the strike price bias, for each maturity bucket. There are still patterns, on average in

the Heston-Nandi model. Speci¯cally, away from the money contracts are priced too low, while

at-the money contracts are priced a bit too high. The NGARCH model appears to remove more

of the strike price bias. Moreover the interquartile range of residuals appears to be tighter as

does the 95% con¯dence intervals.

By normalizing the index price to be $1:0 over the entire ¯ve years, the option price residuals

have a very natural interpretation. An error of 0:01 for example, can be viewed as a error of

one cent, or 1% of the underlying. However, perhaps a better criterion to assess the ¯t of the

models is to examine the percentage error in pricing. Since out-the-money options have small

actual prices, this criterion magni¯es the ability of di®erent models in explaining the prices of

out-the-money contracts.

Figure 3 shows the plots of these percentage errors. Since the percentage errors of deep-

in-the money contracts are so small relative to the other 4 moneyness buckets, the ¯gure only

shows the pattern over the remaining 4 categories.

Insert Figure 3 Here

The results are very revealing. First, note the huge biases in Black Scholes prices. For

deep in, in, and at-the-money contracts, the interquartile range of theoretical prices is within

3 percentage points of actual prices. However, the bias in percentage errors increases as the

9



contract moves out of the money. For example, on average, deep out-the-money options are

mispriced by almost 50%. More than one in four contracts in this category were mispriced by

at least 100%, and the 95% con¯dence interval extended to 200%. As Figure 3 illustrates, the

bias holds true for all maturity buckets.

The two GARCH models perform much better, with the NGARCH model doing fairly well,

even for the deep-out-the money contracts. For example, this model shows almost no moneyness

bias for each of the three maturity buckets. Of course the interquartile range expands as we

move out of the money, but this is to be expected, since the denominator is getting smaller.

The HN model produces intermediate results. Our results here con¯rm other studies, such as

those by Duan (1995) and Heston and Nandi (2000) that have shown that GARCH models are

capable of explaining a signi¯cant portion of the volatility strike price bias.

We now investigate the out-of-sample performance on the models using models that were

estimated over the ¯rst six months, and residuals generated from the last 6 months of each year.

The pattern of these residuals in the out of sample period are similar to the in sample period for

the ¯rst six months. For example, Figure 4 compares the out-of-sample box and whisker plots

of the two GARCH models.

Insert Figure 4 Here

In comparing the residuals of the NGARCH and HN models, their magnitudes appear to

be of the same order, although for out-the-money options there does appear to be more bias in

the HN model. To establish which of the two GARCH models is better, we compare the out-

of-sample predictions, contract by contract. We compute the absolute error for each contract

produced by each model, and compute the di®erence between the two values. Figure 5 provides

histograms of these di®erences by maturity and moneyness. Negative values indicate that the

NGARCH model produced more precise values.

Insert Figure 5 Here

Table 2 summarizes the proportion of contracts for which the HN model outperformed the

NGARCH model in the out of sample periods. For almost all categories the NGARCH model

produces smaller residuals than the HN model. The most dramatic di®erences occur in the deep

out the money contracts. For these contracts the HN model is unable to explain the volatility

strike bias and systematically underperforms.

Insert Table 2 Here

We next investigate how the out of sample errors behave as the time since calibration in-

creases. Speci¯cally, it seems plausible that the conditional forecasts of option prices one week
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after the parameters are estimated might be relatively small compared to conditional option

prices generated several months after the parameters are estimated. To address this issue we

¯rst grouped all the residuals produced by a model into moneyness and maturity buckets and

then looked at the distribution of the percentage pricing errors as the time since estimation

increased, from one week through 25 weeks. Figure 6 compares the distribution of residuals for

6 di®erent out-of-sample periods. In particular, a box and whisker plot is provided for each

month, from the ¯rst out of sample month to the last.

Figure 6a shows the results for the short maturity contracts for the HN model while Figure

6b shows the results for the NGARCH model. The average bias, as indicated by the average

deviation from 0, seems to remain fairly steady as the time since estimation increases. In

addition, the quartiles do not expand over time.

Insert Figure 6a and 6b Here

The ¯gures indicate that the magnitude of the errors are not strongly related to the time since

the estimation was conducted . That the bias of residuals does not appear to expand over the

six month periods after the model was estimated appears to be surprising, especially since the

parameter estimates for the GARCH models in successive years were not that similar. To look at

this more closely, for each moneyness-maturity bucket, and for each year, we computed several

statistics of the residuals as the time horizon expanded from one to twenty weeks. Table 3a

summarizes the ¯ndings for contracts with less than 10 weeks to maturity, and for 3 moneyness

categories for the HN model. Table 3b presents similar results for the NGARCH model.

Insert Table 3a and 3b Here

In particular, the table reports the average error, the average absolute error and the standard

deviation of errors for each category. The ¯rst statistic gives a measure of bias; the second gives

a measure of accuracy, while the third gives a measure of precision. For ease of presentation we

only have presented these statistics for selected time periods, namely for 1; 2; 5; 10 and 20 weeks

after the parameters were estimated. Below each of the tables, there are three typical time series

plots of the average absolute errors of prices over the last 6 months in the middle year, 1993; for

the di®erent moneyness categories.

The results con¯rm that the bias, accuracy, and precision generated from models calibrated

using data from 6 months earlier are not that dissimilar from measures obtained by models that

are calibrated with more recent data. This indicates that the GARCH models may be capturing

important elements of the time series properties of asset and option prices.

As a ¯nal analysis we considered the NGARCH model estimated using our data set over

the ¯rst 6 months of 1991. We computed the out of sample residuals for this model over the
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following four and a half years, without reestimating the parameters. Figure 7 shows the box

and whisker plots of the percentage errors over each quarter since the model was estimated.

Insert Figure 7a and 7b Here

The ¯gure shows the bias in the NGARCH model over time. There appears to be very little

deterioration of the model over time. The ¯gure only reports results for the near term contracts

with less than 45 days to expiration; the pattern of the plots is very similar for the mid term and

longer dated contracts. While there are some quarters where the bias increases, overall there is

very little trend in the biases. Figure 7b contrasts the time series of percentage errors produced by

the NGARCH model with the in-sample percentage errors produced by the Black Scholes model.

The scales of the exhibits in the two ¯gures are the same so as to facilitate easy comparisons.

The enormous biases produced by the Black Scholes model are especially pronounced in the

out-the-money contracts. For these contracts, the out-of-sample NGARCH model consistently

produces better results, even more than four years after the NGARCH model is calibrated. For

example, over 19 consecutive out of sample quarters, the mean absolute percentage error of

out the money contracts never exceeded 50%, whereas the mean absolute percentage error of

in-sample Black Scholes errors exceeded 50% on 18 of the 19 quarters. Indeed, in comparing

¯gures 7a and 7b the out-of-sample performance of the NGARCH model appears to hold its own

or dominate the in sample performance of the Black Scholes model, even after many years have

passed since the parameters were calibrated. Moreover, unlike the Black Scholes model, where

there is a persistent bias in the direction of the residuals, for the NGARCH model, the bias is

generally smaller and tends to shift around 0.

IV Conclusion

This article has investigated the performance of two GARCH models, namely Duan's NGARCH

model and the HN model. The NGARCH model is important in its own right and also serves

as an approximation for particular stochastic volatility models generated by two orthogonal

Wiener processes. The HN model is also interesting since its volatility updating structure

permits analytical solutions to be generated for European options. This article has compared

these two models relative to each other and relative to the Black Scholes model. The results

indicate that both GARCH models are capable of explaining a signi¯cant amount of the maturity

and strike price bias associated with the Black Scholes model. The NGARCH model appears to

outperform the HN model, especially in its ability to price deep out-the-money contracts.

The out-of-sample performance of the GARCH models, and especially the NGARCH model

is encouraging. The fact that models estimated using old option data are still capable of explain-

ing option prices for signi¯cant time periods indicates that the underlying models are capturing
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important elements of the option pricing process. In extreme cases, where the NGARCH pa-

rameters are not reestimated for quarters, or even years, for in and at the money options the

model continues to perform at levels usually no worse than in-sample Black Scholes, and, for

out-the-money options, the NGARCH model continues to do signi¯cantly better. The cost of

reestimating the parameters of a GARCH process is not that high. We therefore do not recom-

mend using the model to price options based on parameter estimates that have been estimated

over a distant time horizon. Our point here, is that if frequent updates of the model are not

made, then the performance of the GARCH models is still adequate, especially relative to the

performance of a Black Scholes model. In addition, the prolonged good performance of an

NGARCH model indicates that it must be capturing essential elements that determine option

prices.

Since American options and exotics can be e±ciently priced using numerical procedures

developed by Duan and Simonato (2000) and Ritchken and Trevor (1999), this article suggests

that GARCH models, perhaps as a proxy for true stochastic volatility models, signi¯cantly

improves upon the performance of the Black Scholes model, and, in light of the relative ease in

pricing American claims under these processes, these models should be given closer scrutiny by

the trading community.
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Table 1a: Parameter Estimates for the HN Model 

 
 

  

Time Period No. of 
Weeks 

No. of 
Contracts 

SSE ββ0 ββ1 ββ2 ωω  Initial 
Volatility 

Final 
Volatility 

Stationary  
Volatility 

 
 

1991 1st Half 

 
 

25 

 
 

953 

 
 

1264.51 

 
 

1.19E-06 

 
 

8.73E-03 

 
 

3.04E-06 

 
 

555.57 

 
 

0.4215 

 
 

0.1741 

 
 

0.16982 
1991 2nd Half 25 961 390.56 2.24E-06 1.15E-01 3.13E-06 509.48 0.2676 0.1162 0.16463 

           

1992 1st Half 25 1175 415.93 1.04E-06 3.10E-01 8.34E-07 888.10 0.2013 0.1435 0.14711 

1992 2nd Half 25 1035 335.28 4.60E-07 5.63E-01 4.37E-07 984.03 0.1216 0.1046 0.15645 

           

1993 1st Half 25 1492 941.14 3.01E-11 3.60E-01 3.12E-06 430.06 0.0741 0.1553 0.13386 

1993 2nd Half 24 1466 702.71 9.66E-10 2.02E-01 2.55E-06 541.71 0.1167 0.1182 0.13564 

           

1994 1st Half 25 1419 1727.78 8.25E-07 3.18E-02 1.42E-06 806.96 0.1301 0.1870 0.13709 

1994 2nd Half 25 1598 1089.49 7.91E-07 1.90E-09 7.15E-07 1166.70 0.1306 0.1400 0.14486 

           

1995 1st Half 25 1774 996.58 3.67E-07 1.42E-01 1.27E-06 805.13 0.1541 0.1250 0.13493 

1995 2nd Half 25 1702 1135.83 9.00E-07 1.39E-01 1.27E-06 803.30 0.1391 0.1157 0.13618 

           

 

Table 1a shows the parameter estimates for the HN model for each of ten periods.  Over each time 
period the sum of squared error was computed as discussed in the text and is reported in the fourth 
column. All volatility values are reported in an annualized basis. 



 
 

Table 1b: Parameter Estimates for the NGARCH Model 

           
       

           
Time Period No. of 

Weeks 
No. of 

Contracts 
SSE ββ0 ββ1 ββ2 ωω  Initial 

Volatility 
Final 

Volatility 
Stationary  
Volatility 

           
1991 1st Half 25 953 582.2 6.77E-07 0.8576 0.0172 2.6128 0.2766 0.1615 0.1747 

1991 2nd Half 25 961 378.02 1.45E-06 0.6807 0.0240 3.4134 0.1897 0.0749 0.1858 

           

1992 1st Half 25 1175 404.78 2.23E-06 0.2660 0.0192 5.9645 0.2181 0.1349 0.1580 

1992 2nd Half 25 1035 323.73 7.42E-07 0.6589 0.0108 5.4495 0.1189 0.1060 0.1761 

           

1993 1st Half 25 1492 622.32 1.88E-06 0.6319 0.1651 1.0424 0.0792 0.1450 0.1707 

1993 2nd Half 24 1466 580.23 3.71E-06 0.2627 0.2359 1.3973 0.1072 0.1246 0.1822 

           

1994 1st Half 25 1419 1189.73 2.28E-06 0.2618 0.0636 3.1907 0.0177 0.1940 0.1743 

1994 2nd Half 25 1598 860.07 1.29E-06 0.2599 0.0206 5.8437 0.0905 0.1269 0.1753 

           

1995 1st Half 25 1774 662.78 1.35E-06 0.6384 0.0905 1.6692 0.1750 0.1086 0.1615 

1995 2nd Half 25 1702 852.35 1.69E-06 0.6017 0.0455 2.6789 0.0073 0.0965 0.1520 

           
           
           

 
 
Table 1b shows the parameter estimates for the NGARCH model for each of ten periods.  Over each 
time period the sum of squared error was computed as discussed in the text, and is reported in the fourth 
column. All volatility values are reported in an annualized basis. 



 
 
 
 
 
Table 2:  Comparison of HN and NGARCH Prediction Errors in the Out-of-Sample Periods* 

 

 

 
 
 
*The table compares the absolute residual of the NGARCH model with the absolute error 
of the HN model.  In each cell there are three entries. The first entry is the number of 
contracts in that category. The second entry is the number of times the absolute value of 
the residual for the HN model is lower than the absolute value of the NGARCH model. 
The final value is the proportion of times the HN model beat the NGARCH model. For 
example, consider the short term, deep in the money contracts. In 746 out-of-sample 
predictions, the HN model gave a smaller absolute error, than the NGARCH model. That 
is, the HN model won 32.84% of the time.  
 
At the 5% level of significance, the NGARCH model outperforms the HN model for all 
short term, and middle term  contracts, and for all deep out the money contracts.  For long 
term contracts, near-the-money, and indicated with a * above the fraction of wins, the 
NGARCH model wins more times, but the differences are not statistically significant, at 
the 5% level 
 
 
 
 

Maturity
746 245 373 154 254 90 285 77 52 7

0.3284 0.4129 0.3543 0.2702 0.1346

1060 443 422 178 289 122 383 150 287 68
0.4179 0.4218 0.4221 0.3916 0.2369

1338 535 375 183 229 110 306 136 363 137
0.3999 0.488* 0.4803* 0.4444* 0.3774

Short

Middle

Long

Moneyness
deep in in at out deep out



Year

# 
Contracts

Average 
Error($)

Average 
Absolute 
Error ($)

Standard 
Deviation 

($)

# 
Contracts

Average 
Error

Average 
Absolute 
Error ($)

Standard 
Deviation 

($)

# 
Contracts

Average 
Error($)

Average 
Absolute 
Error ($) 

Standard 
Deviation 

($)

1 39 -1.063 1.063 0.405 70 -0.751 0.874 0.651 56 -0.146 0.402 0.480

2 36 -1.364 1.364 0.273 57 -1.220 1.220 0.343 58 -0.822 0.822 0.386

1991 5 21 -1.096 1.096 0.338 43 -0.950 0.950 0.341 55 -0.280 0.318 0.296

10 23 -0.317 0.393 0.298 42 0.163 0.533 0.620 40 0.445 0.506 0.422

20 38 1.151 1.157 0.690 55 1.659 1.663 0.924 37 1.854 1.854 0.856

1 19 -0.182 0.267 0.251 47 0.223 0.398 0.438 41 0.021 0.354 0.425

2 35 -0.230 0.308 0.251 62 -0.075 0.299 0.350 76 -0.158 0.462 0.565

1992 5 26 -0.741 0.741 0.202 52 -0.880 0.880 0.373 52 -0.640 0.640 0.335

10 6 0.048 0.255 0.286 21 0.628 0.657 0.334 13 0.057 0.242 0.306

20 24 -0.446 0.446 0.179 54 -0.153 0.292 0.305 64 -0.360 0.433 0.393

1 30 0.302 0.338 0.312 63 0.944 0.958 0.586 68 0.976 0.982 0.480

2 28 0.124 0.199 0.222 49 0.534 0.566 0.448 77 0.105 0.499 0.596

1993 5 31 -0.357 0.376 0.217 72 -0.210 0.377 0.367 105 -0.574 0.768 0.876

10 24 -0.064 0.210 0.250 47 0.304 0.423 0.442 68 0.146 0.373 0.460

20 24 -0.005 0.226 0.268 58 0.303 0.405 0.399 82 -0.302 0.493 0.646

1 29 0.282 0.346 0.390 62 0.829 0.859 0.657 83 0.463 0.931 0.938

2 28 0.248 0.331 0.343 52 0.747 0.767 0.561 66 1.084 1.092 0.437

1994 5 8 -0.199 0.291 0.244 36 0.238 0.470 0.515 33 0.457 0.576 0.536

10 29 0.437 0.493 0.443 61 1.032 1.055 0.637 60 1.177 1.189 0.463

20 39 -0.531 0.551 0.237 65 -0.308 0.469 0.422 66 -0.060 0.348 0.420

1 27 -1.403 1.403 0.682 77 -0.680 1.111 1.080 144 -0.416 0.654 0.771

2 38 -1.674 1.674 0.650 76 -1.288 1.339 0.859 151 -0.108 0.562 0.637

1995 5 25 -1.112 1.112 0.392 63 -0.313 0.768 0.865 60 0.624 0.625 0.459

10 34 -1.411 1.411 0.415 79 -1.142 1.142 0.490 117 -0.321 0.381 0.295

15 5 -0.269 0.557 0.572 52 0.086 0.616 0.722 189 -0.361 0.563 0.537

This table reports statistics on the errors in pricing as the number of weeks from the estimation period increases. The errors are actual dollar 
errors in prices of contracts. The results are presented for contracts with less than 70 days to maturity, and for three moneyness buckets. The 
number of contracts in each bucket are reported as well as the average error, average absolute error, and std. deviation of errors. The fact that the 
HN model does not deteriorate significantly over time indicates that the model may be capturing important aspects of the true dynamics.

Table 3a
Out of Sample Performance Over Time  for HN Model

 Week 
No.

Out of the Money Option At the Money Option In the Money Option

Errors for out-the-money options 1993
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Year
# 

Contracts
Average 
Error ($)

Average 
Absolute 
Error ($)

Standard 
Deviation 

($)

# 
Contracts

Average 
Error ($)

Average 
Absolute 
Error ($)

Standard 
Deviation 

($)

# 
Contracts 

Average 
Error ($)

Average 
Absolute 
Error ($)

Standard 
Deviation 

($)

1 39 -0.349 0.359 0.234 70 -0.408 0.449 0.379 56 -0.707 0.710 0.382

2 36 -0.336 0.340 0.257 57 -0.473 0.478 0.383 58 -1.253 1.253 0.445

1991 5 21 -0.112 0.156 0.153 43 -0.152 0.208 0.226 55 -0.582 0.585 0.242

10 23 0.148 0.181 0.150 42 0.170 0.214 0.210 40 -0.468 0.475 0.289

20 38 0.051 0.261 0.295 55 -0.104 0.320 0.387 37 -0.694 0.779 0.573

1 19 -0.135 0.208 0.200 47 0.114 0.295 0.348 41 0.005 0.310 0.374

2 35 -0.090 0.240 0.266 62 -0.058 0.288 0.330 76 -0.138 0.465 0.573

1992 5 26 -0.406 0.406 0.182 52 -0.542 0.568 0.453 52 -0.456 0.477 0.424

10 6 0.271 0.287 0.248 21 0.658 0.663 0.291 13 0.100 0.242 0.316

20 24 -0.171 0.188 0.123 54 0.004 0.175 0.209 64 -0.265 0.412 0.417

1 30 0.236 0.267 0.351 63 0.509 0.526 0.535 68 0.786 0.786 0.361

1993 2 28 0.753 0.754 0.549 49 1.163 1.163 0.771 77 0.554 0.849 0.835

5 31 -0.157 0.194 0.167 72 -0.208 0.288 0.267 105 -0.584 0.741 0.807

10 24 0.082 0.183 0.206 47 0.215 0.332 0.383 68 0.053 0.327 0.398

20 24 -0.321 0.323 0.268 58 -0.512 0.513 0.381 82 -0.765 0.773 0.532

1 29 0.112 0.197 0.283 62 0.501 0.546 0.568 83 0.553 0.882 0.826

1994 2 28 0.117 0.194 0.218 52 0.406 0.432 0.396 66 1.025 1.026 0.419

5 8 0.100 0.118 0.123 36 0.335 0.364 0.345 33 0.571 0.626 0.463

10 29 0.496 0.497 0.308 61 0.889 0.890 0.451 60 1.242 1.261 0.397

20 39 -0.630 0.630 0.201 65 -0.646 0.693 0.360 66 -0.081 0.428 0.544

1 27 -1.012 1.012 0.454 77 -0.594 0.834 0.730 144 -0.350 0.598 0.711
1995 2 38 -1.342 1.342 0.403 76 -1.162 1.162 0.469 151 -0.136 0.435 0.484

3 38 -0.448 0.687 0.715 72 0.301 1.047 1.184 110 0.865 0.895 0.734
5 25 -0.957 0.957 0.331 63 -0.583 0.706 0.570 60 0.389 0.419 0.379

10 34 -0.819 0.819 0.207 79 -0.736 0.736 0.262 117 -0.253 0.338 0.289
15 5 -1.308 1.308 0.757 52 -1.466 1.468 0.768 189 -0.788 0.813 0.487

This table reports statistics on the errors in pricing as the number of weeks from the estimation period increases. The errors are actual dollar errors 
in prices of contracts. The results are presented for contracts with less than 70 days to maturity, and for three moneyness buckets. The number of 
contracts in each bucket are reported as well as the average error, average absolute error, and std. deviation of errors. The fact that the NGARCH 
model does not deteriorate significantly over time indicates that the model may be capturing important aspects of the true dynamics. The graphs 
show the weekly evolution of the average absolute error over the out of sample weeks.

Table 3b
Out of Sample Performance Over Time  for NGARCH Model

 Week 
No.

Out of the Money Option At the Money Option In the Money Option

Error for out-the-money options 1993
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  Year

1991

1992

1993

1994

1995

Figure 1 shows the time series of local volatilities for each year. For the first two models the parameters  are estimated using the first six months of data. The 
time series of local volatilities is then updated daily based on the time series of the underlying index. For the Black Scholes model the implied volatility is 
extracted weekly using the option data. The implied volatility is estimated using all option contracts, with the criterion being minimizing the sum of squared 
errors.

Figure 1
Time Series of Local Volatility
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Figure 2

Box and Whisker Plots of Residuals vs. Moneyness

Figure 2 shows the distribution of residuals, in the form of box and whisker plots, for each moneyness-
maturity bucket, for the three models. The underlying equity price is normalized to $1.0.
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Figure 3

Figure 3 shows the distribution of percentage errors, in the form of box-whisker plots  for each moneyness-maturity bucket, 
for the three models. 

Box and Whisker Plots of Percentage Errors vs. Moneyness
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HN MODEL NGARCH MODEL

* Figure 4   compares the out of sample residuals  for the two GARCH models by moneyness and by maturity.

Figure 4
Out of Sample Box and Whisker Plots*
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Each histogram has a vertical line placed at zero.  Negative values indicate that the 
NGARCH model produces more precise values; positive values indicate that the HN model 
produces more precise values.  The in-the-money contracts include deep in the money; the 
out-the-money contracts include deep out the money.
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Figure 6a

Out of Sample Percentage Errors by Moneyness for the HN Model

The figure shows the out of sample performance of the HN model for the short term contracts. The parameters are 
estimated using the first 6 months of data in each year. The residuals are established weekly for the last 6 months of each 
year. The figure shows the distributions, in the form of box and whisker plots of the percentage errors for adjacent months. 
For example, for short term at the money contracts, the second plot summarizes the 45 contracts that were in the 2 month  
category, which actually extends from 4 weeks to under 8 weeks after the parameters were estimated. The in the money 
contracts include the deep in the money contracts, and the out the money contracts include the deep out the money 
contracts.
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Figure 6b

Out of Sample Percentage Errors by Moneyness  for the NGARCH Model

The figure shows the out of sample performance of the NGARCH model for the short term contracts. The parameters are 
estimated using the first 6 months of data in each year. The residuals are established weekly for the last 6 months of each 
year. The figure shows the distributions, in the form of box and whisker plots of the percentage errors for adjacent months. 
For example, for short term at the money contracts, the second plot summarizes the 45 contracts that were in the 2 month  
category, which actually extends from 4 weeks to under 8 weeks after the parameters were estimated. The in the money 
contracts include the deep in the money contracts, and the out the money contracts include the deep out the money contracts.
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Figure 7a

Time Series of Out-of-Sample Percentage Errors by Moneyness for NGARCH  Short Term Contracts

Each exhibit shows a time series of box and whisker plots of quarterly NGARCH percentage errors for  a particular moneyness 
category. In  (out) the money contracts include deep in (out) the money contracts.  All three exhibits are for short term maturities. The 
parameters for the model were estimated over the first six months of 1991. The residualsare from June 1991 through December 1995.
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Time Series of In-Sample Percentage Errors by Moneyness for Black Scholes Short Term Contracts

Each exhibit shows a time series of box and whisker plots of quarterly Black Scholes percentage errors for  
a particular moneyness category. In  (out) the money contracts include deep in (out) the money contracts.  
All three exhibits are for short term maturities. 
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