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Abstract

In this paper we establish a family of models where the credit spreads of multiple firms and the
term structure of interest rates at any future date can be represented, analytically, in terms of
a finite number of state variables. The models make no restrictions on the correlation structure
between interest rates and credit spreads. Default correlations among credit spreads of different
firms are induced by allowing the intensity rates of different firms to be correlated with each
other. In addition, clustering behavior of defaults is obtained by allowing default events to have
both temporary and permanent effects on prices of bonds in related industries. Our multifactor
models therefore allow us to explore the effects of both types of correlations in interest and credit
sensitive contracts. Moreover, since the clustering behavior can be induced by risks common
to all bonds in an industry, our models also allows the effects of systemic risk to be closely
examined.



This paper investigates Markovian models in the Heath Jarrow Morton (1992) (hereafter
HJM) paradigm that can be used to price credit derivatives on both single and multiple names.
The models we develop have the following properties. First, they fully incorporate the cur-
rent riskless term structure information as well as the full credit spread curve information for
each firm. Second, the models, being Markovian, permit the riskless and risky credit spread
curves to be analytically computed, at any point in time based on a finite collection of state
variables. Third, the models allow for arbitrary correlation between riskless interest rates and
credit spreads. Fourth, the models include those for which interest rates and credit spreads are
non-negative. Fifth, interest rate and credit spread volatilities could be time homogeneous and
level dependent. Finally, not only are default rates correlated, but defaults of individual firms
could lead to ripple or jump effects in credit spreads of related firms. That is, the models permit
defaults to cluster over time due to business cycle effects or due to other specific individual firm
default events.

The models we develop belong to the family of reduced form models, where defaults occur
as surprise stopping times. In this framework, the default process of risky debt is modeled
directly rather than through the asset process for the firm. In addition, assumptions are required
regarding the recovery rate in default. Combining the default process and recovery rate with
assumptions on the riskless term structure process, leads to models for risky bonds and their
derivative products.1 Many recent studies of corporate debt model the default intensity of each
firm as a function of common and firm specific factors. Bakshi, Madan and Zhang (2001),
for example, assume intensities are driven by interest rates, and a firm specific factor, such as
leverage. Janosi, Jarrow and Yildirim (2001) assume the intensity depends on interest rates
and a market index. Duffee (1999) assumes that the intensities depend on factors relating to
interest rates alone while Driessen (2003) adds additional common factors for all firms as well
as firm specific factors. Many of the models in this area build off the usual affine framework,
where the state variables are modeled as jump diffusions.2 Such models have been very helpful
in explaining expected returns and risk premia in the corporate bond market and have led to a
better understanding of the elements of risk that are priced in the corporate bond market. In
contrast to these types of studies our orientation in this paper is to establish models for pricing
interest rate and credit sensitive products, where prices are set relative to given riskless and
risky term structures. As such, we are less interested in the sources of risk premia and our entire

1One set of models employs a “credit-rating” based approach in which default is depicted through a gradual

change in ratings driven by a Markovian transition matrix. Examples of this approach include Das and Tu-

fano (1996), and Jarrow, Lando and Turnbull (1997). Others, such as Duffie and Singleton (1996) and Madan

and Unal (1998) model the default process without credit-rating migrations. An alternative approach, referred to

as a structural modeling approach, follows the lead of Merton (1974), who views the firm’s liabilities as contingent

claims written on the firm’s underlying assets. For excellent discussions of both the reduced form approach and

the structural approach see Duffie and Singleton (2003).
2See Duffie, Pan and Singleton (1999), for a discussion of these models.
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analysis proceeds under the risk neutral measure.

Duffie and Singleton (1999), Schönbucher (2000), and others, have shown how the HJM
paradigm can be extended to include risky debt. Specifically, necessary restrictions on the
dynamics of drift terms of forward rates and risky forward credit spreads have been identified
that permits risky bonds to be priced in an arbitrage free environment. Unfortunately, the
resulting dynamics of all riskless forward rates and risky forward credit spreads are not in
general Markov in a finite number of state variables. As a result, implementing these models,
even via Monte Carlo simulation, is delicate and computationally intensive. The problem is
compounded further if the derivative security that needs to be priced depends on the credit
spreads of multiple names. In this paper we generate an m-factor model for the riskless term
structure and a correlated n-factor model for forward credit spreads, in such a way that riskless
and risky bond prices can be recovered analytically in terms of their initial values and a finite
collection of underlying state variables.

When the credit spread dynamics are shut down, (n = 0), and the number of stochastic
drivers for the riskless term structure is set to one, (m = 1), then our model reduces to Ritchken
and Sankarasubramanian (1995). They identified necessary and sufficient conditions on the
volatility structures of forward rates that permit the entire term structure dynamics to be
represented by the short rate and a second auxiliary state variable, that fully captures the path
dependence inherent in the HJM models. The volatility structures that are admissible here
are fairly large and the models nest the Hull and White (1993) term structure model as well as
models where volatilities are level dependent. Our new models also nest multi-variate extensions
of the Ritchken and Sankarasubramanian model developed by Inui and Kijima (1998).3 When
credit spreads are also considered, i.e., when n > 0, the models become much more complex,
especially if credit spreads are correlated with interest rates. Our simplest model, consisting
of two correlated factors, m = n = 1, where the initial riskless and credit spread curves are
taken as given, where volatility structures for forward rates and risky forward credit spreads
are time homogeneous and level dependent, and where arbitrary correlation between interest
rates and credit spreads is allowed, requires 6 state variables. As m and n increase, the number
of state variables increases in a way that depends on the structure of volatility and correlation
restrictions.

The analysis is trivial when interest rates and credit spreads are uncorrelated. As a result,
our analysis would be of little interest if the correlation effects between interest rates and credit
spreads had little effect on prices of credit derivatives. Therefore, all our credit derivative pricing
examples that we consider are geared towards illustrating how some credit derivative products
are extremely sensitive to correlations between interest rate and credit spreads.

3For further Markovian models of the riskless term structure see Bhar and Chiarella (1995) and Cheyette (1995).
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This paper focuses on models of credit contracts that depend on multiple names. A main
issue here is how to model default correlation. This can be accomplished in several ways.
Of course correlation can be directly specified through the joint dynamics of the intensities.
However, conditional on these intensities, defaults still remain independent. As a result, the
effective default correlation that these models offer may not be dramatic. Jarrow and Yu (2001)
and Yu (2002) extend these models so that a default can trigger jumps in the intensities of other
firms default processes. Duffie and Singleton (1999b) provide an alternative approach that uses
separate point processes, some of which trigger joint defaults, while others reflect firm specific
defaults. Finally, Schönbucher and Schubert (2002) permit all individual credits to be specified
using any simple default intensity models separately for each firm, and then independently
building in a dependence structure via a copula function.

In our models, we introduce default dependence by correlating the intensity processes of
different firms. In addition, we also permit jumps to occur in the intensities of some firms when
particular events occur. In this regard our models are somewhat similar to Jarrow and Yu (2001),
and Yu (2002). These infection models assume that the intensity process jumps at the time of a
default of another firm, and this leads to a repricing of the bond. In contrast, in our approach,
we assume there is an impact on prices, somewhat akin to a recovery, and this affects the forward
credit spreads, inducing a jump in their values. The price impacts that we permit fall into two
types, namely permanent effects, or temporary. With these additions, Markovian models are
developed for the term structures of all firms and derivative contracts based on a portfolio of
credits can be efficiently computed. We present examples which highlight the importance of
adding these impact factors so as to enhance default correlations. In particular, we examine a
credit derivative contract that has a payout linked to a portfolio of bonds at the time of first
default in the portfolio.

Finally, our models contribute to the literature on systemic risk. In particular, our models
permit events to occur which can trigger large interest or credit risk shocks that may permeate
through all bonds in a sector. Such models, therefore, may be of interest in studies of value at
risk where the impact of small probability events that cause large correlated losses in industries
is currently of much interest.

The paper proceeds as follows. In section 1, we discuss a multi-dimensional single risky bond
model and review the necessary constraints on drift terms that prevents riskless arbitrage. In
section 2 we consider constraints on volatility terms that enables a Markovian representation.
In section 3 we extend the analysis to include portfolios of risky bonds where defaults of any
one bond could impact, in a temporary or permanent basis, the credit spreads of other bonds.
We provide examples to illustrate implementations of the models, as well as to highlight the
importance of correlation effects between credit spreads and interest rates, correlation effects
between credit spreads, the impact of clustering, and the consequences of systemic risk on
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pricing. Section 4 concludes the paper.

1 HJM Models for Defaultable Bonds

Let P (t, T ) be the price at date t of a pure riskless discount bond that pays $1 at date T . Then:

P (t, T ) = e−
∫ T

t
f(t,u)du, (1)

where f(t, u) is the date t forward rate for the future time increment [u, u+dt]. We assume that
forward rates follow a diffusion of the form:

df(t, T ) = µf (t, T )dt + σf (t, T )dz(t) given f(0, T ) ∀T ≤ T ∗, (2)

where the drift term µf (t, T ) is a predictable process, the volatility term, σf (t, T ), is a predictable
1×m vector process, z(t) = (z1(t), ..., zm(t))′ is an m-dimensional standard Wiener process, and
T ∗ is a distant time horizon. Here we assume that µf (t, T ) and σf (t, T ) are regular enough
to allow differentiation under the integral sign, interchange of the order of integration, partial
derivatives with respect to the T variable, and have the property that the resulting bond prices
are bounded. The instantaneous spot rate at date t is r(t) = f(t, t).

Now, consider a risky bond. Let Π(t, T ) represent the date t price of the bond that promises
to pay $1.0 at date T . The time to default is a stopping time, τ , say. Define N(t) = 1τ≤t. We
assume that N(t) has intensity λ(t). If a default occurs, we initially assume there is no recovery.
Then:

Π(t, T ) = (1 −N(t))e−
∫ T

t
(f(t,u)+λ(t,u))du. (3)

Here λ(t, u) is the forward rate spread, representing the difference between the defaultable
forward rate and the default free forward rate. We assume:

dλ(t, T ) = µλ(t, T )dt + σλ(t, T )dw(t) given λ(0, T ) ∀T ≤ T ∗, (4)

where the drift term µλ(t, T ) is a predictable process, the volatility term, σλ(t, T ), is a predictable
1 × n vector, and w(t) = (w1(t), ..., wn(t))′ is an n-dimensional standard Wiener process.

Similarly, we assume that the drift and volatility terms have the same regularity conditions as
the forward rate process. The instantaneous spread is λ(t, t). It can be shown that λ(t) = λ(t, t).
Further, assume E(dz(t)dw(t)′) = Σm×ndt. Equation (3) can be rewritten as:

Π(t, T ) = S(t, T )P (t, T ), (5)

where
S(t, T ) = (1 −N(t))e−

∫ T

t
λ(t,u)du. (6)
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Applying Ito’s rule to equations (1) and (6) we obtain:

dP (t, T )
P (t, T )

= −dG(t, T ) +
1
2
(dG(t, T ))2

dS(t, T )
S(t, T )

= −dK(t, T ) +
1
2
(dK(t, T ))2 − dN(t)

where G(t, T ) =
∫ T
t f(t, u)du and K(t, T ) =

∫ T
t λ(t, u)du. Using Lemma 1 in the appendix, the

dynamics reduce to:

dP (t, T )
P (t, T )

= µp(t, T )dt + σp(t, T )dz(t) (7)

dS(t, T )
S(t, T )

= µs(t, T )dt + σs(t, T )dw(t) − dN(t) (8)

where

µp(t, T ) = r(t) +
1
2
σp(t, T )σ′p(t, T ) −

∫ T

t
µf (t, u)du (9)

σp(t, T ) = −
∫ T

t
σf (t, u)du (10)

µs(t, T ) = λ(t) +
1
2
σs(t, T )σ′s(t, T ) −

∫ T

t
µλ(t, u)du (11)

σs(t, T ) = −
∫ T

t
σλ(t, u)du. (12)

The dynamics of the risky bond are given by:

dΠ(t, T )
Π(t, T )

=
dP (t, T )
P (t, T )

+
dS(t, T )
S(t, T )

+
dP (t, T )
P (t, T )

dS(t, T )
S(t, T )

.

Substituting equations (7) and (8) into the above equation leads to:

dΠ(t, T )
Π(t, T )

= µΠ(t, T )dt + σp(t, T )dz(t) + σs(t, T )dw(t) − dN(t)

where
µΠ(t, T ) = µp(t, T ) + µs(t, T ) + σp(t, T )Σσ′s(t, T ) (13)

Proposition 1

Assume the dynamics of forward rates and risky forward credit spreads under the risk neutral

measure are given by:

df(t, T ) = µf (t, T )dt + σf (t, T )dz(t) given f(0, T ) ∀T ≤ T ∗

dλ(t, T ) = µλ(t, T )dt + σλ(t, T )dw(t) given λ(0, T ) ∀T ≤ T ∗.
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Then, to avoid arbitrage opportunities, the following drift restrictions must hold.

µf (t, T ) = |σp(t, T )|σ′f (t, T ) (14)

µλ(t, T ) = |σs(t, T )|σ′λ(t, T ) − σp(t, T )Σσ′λ(t, T ) − σf (t, T )Σσ′s(t, T ) (15)

Proof: See Appendix.

Equations (14) and (15) curtail the drift expressions in terms of the volatility structures.
The restriction on the drift terms for riskless forward rates under the risk neutral measure were
first identified by HJM (1992). The restrictions for risky forward rates were identified by several
authors, including Schönbucher (2000). In general, these restrictions imply that the dynamics of
riskless and risky bonds are not Markovian in a finite collection of state variables. This creates
computational difficulties since the entire riskless and risky term structures have to be stored
along all the paths that are generated.

2 Markovian Models

We now consider restrictions on the dynamics of forward rates and risky forward rate spreads
that result in the process for risky bonds being Markovian in a few state variables. First define

A(t, T ) = (e−
∫ T

t
κ1(u)du, ..., e−

∫ T

t
κm(u)du) and κ(t) = (κ1(t), ...., κm(t)) where κi(t), i = 1, ...,m

are deterministic functions of time t. Then assume

σf (t, T ) = σr(t) ⊗A(t, T ) (16)

where the operator ⊗ represents an element operation of the form:4

(a1, ..., am) ⊗ (b1, ..., bm) ≡ (a1b1, ..., ambm),

when a and b are vectors, and:

(a1, ..., am)′ ⊗ Σm×n =




a1Σ1.

a2Σ2.

· · ·
amΣm.


 ,

when Σm×n is an m × n matrix with ith row Σi.. In equation (16), σr(t) = (σr1(t), ..., σrm(t))
could depend on information on the term structure up to date t. As an example, σr(t) =
(σ[r(t)]γ1 , ..., σ[r(t)]γm ).5 Further, A(t, T ) is a deterministic time varying function satisfying the
semi group property, A(t, T ) = A(t, s) ⊗A(s, T ) for t ≤ s ≤ T .

4The operator ⊗ used here should not be confused with the Kronecker product.
5To avoid exploding rates, one can always curtail the maximum volatility.
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With this structure,

σp(t, T ) = −σr(t) ⊗
∫ T

t
A(t, u)du ≡ −σr(t) ⊗ α(t, T ).

Notice, that for 0 ≤ u ≤ t ≤ T , we have:

σf (u, T ) = σr(u) ⊗A(u, t) ⊗A(t, T ) (17)

σp(u, T ) = −σr(u) ⊗ [α(u, t) + α(t, T ) ⊗A(u, t)] (18)

and A(t, t) = 1, α(t, t) = 0 and ∂α(t,T )
∂T = A(t, T ).

We impose a similar structure for the volatility structure on the forward credit spreads.

In particular, define B(t, T ) = (e−
∫ T

t
θ1(u)du, ..., e−

∫ T

t
θn(u)du) and θ(t) = (θ1(t)....θm(t)) where

θi(t), i = 1, ..., n are deterministic functions of time t. Then assume

σλ(t, T ) = σλ(t) ⊗B(t, T ). (19)

Here, σλ(t) = (σλ1(t), ..., σλn(t)) could depend on information on the term structure up to date
t. With this structure,

σs(t, T ) = −σλ(t) ⊗
∫ T

t
B(t, u)du ≡ −σλ(t) ⊗ β(t, T ).

Notice, that for 0 ≤ u ≤ t ≤ T , we have:

σλ(u, T ) = σλ(u) ⊗B(u, t) ⊗B(t, T ) (20)

σs(u, T ) = −σλ(u) ⊗ [β(u, t) + β(t, T ) ⊗B(u, t)] (21)

and B(t, t) = 1, β(t, t) = 0 and ∂β(t,T )
∂T = B(t, T ).

We now provide the main result of this section.

Proposition 2

Given the dynamics of the forward rates and forward credit spreads are:

df(t, T ) = µf (t, T )dt + σf (t, T )dz(t) given f(0, T ) ∀T ≤ T ∗

dλ(t, T ) = µλ(t, T )dt + σλ(t, T )dw(t) given λ(0, T ) ∀T ≤ T ∗.

with the volatility structures curtailed as:

σf (t, T ) = σr(t) ⊗A(t, T )

σλ(t, T ) = σλ(t) ⊗B(t, T ),

then, future forward rates and forward credit spreads can be represented by a Markovian system.

In particular:

7



(i) Forward rates at date t relate to forward rates at date 0 via:

f(t, T ) = f(0, T ) +A(t, T )ψ′
1(t) + (α(t, T ) ⊗A(t, T ))ψ′

2(t), (22)

where the state variables,

ψ1(t) =
∫ t

0
(σr(u) ⊗ σr(u) ⊗ α(u, t) ⊗A(u, t))du +

∫ t

0
σr(u) ⊗A(u, t) ⊗ dz′(u)

ψ2(t) =
∫ t

0
(σr(u) ⊗ σr(u) ⊗A(u, t) ⊗A(u, t))du,

have dynamics, given by:

dψ1(t) = (ψ2(t) − κ(t) ⊗ ψ1(t))dt + σr(t) ⊗ dz′(t)

dψ2(t) = (σr(t) ⊗ σr(t) − 2κ(t) ⊗ ψ2(t))dt.

(ii) Forward credit spreads at date t, relate to their initial values via:

λ(t, T ) = λ(0, T ) + φ1(t)B′(t, T ) + φ2(t)(β(t, T ) ⊗B(t, T ))′ + φ3(t)B′(t, T ) + φ4(t)A′(t, T )

+ α(t, T )φ5(t)B(t, T ) +A(t, T )φ5(t)β(t, T ) (23)

where the state variables,

φ1(t) =
∫ t

0
σλ(u) ⊗ σλ(u) ⊗ β(u, t) ⊗B(u, t)du+

∫ t

0
σλ(u) ⊗B(u, t) ⊗ dw′(u)

φ2(t) =
∫ t

0
σλ(u) ⊗ σλ(u) ⊗B(u, t) ⊗B(u, t)du

φ3(t) = 1m
∫ t

0
(σr(u) ⊗ α(u, t))′ ⊗ Σ ⊗ (σλ(u) ⊗B(u, t))du

φ4(t) = 1n
∫ t

0
(σλ(u) ⊗ β(u, t))′ ⊗ Σ′ ⊗ (σr(u) ⊗A(u, t))du

φ5(t) =
∫ t

0
(σr(u) ⊗A(u, t))′ ⊗ Σ ⊗ σλ(u) ⊗B(u, t)du,

have dynamics given by:

dφ1(t) = (φ2(t) − θ(t) ⊗ φ1(t))dt + σλ(t) ⊗ dw(t)

dφ2(t) = (σλ ⊗ σλ(t) − 2θ(t) ⊗ φ2(t))dt

dφ3(t) = [1mφ5(t) − φ3(t) ⊗ θ(t)] dt

dφ4(t) =
[
1nφ′5(t) − φ4(t) ⊗ κ(t)

]
dt

dφ5(t) =
[
σ′r(t) ⊗ Σ ⊗ σλ(u) − (κ′(t) ⊗ φ5(t) + φ5(t) ⊗ θ(t))

]
dt,

where 1m = (1, ..., 1)1×m.

Proof: See Appendix.
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The above proposition allows us to track a finite number of state variables, whose dynamics
are Markovian, and then, at any point in time, to be able to reconstruct the entire term structures
of riskless and risky rates. Hence European contracts with payouts relating to par rates, credit
spreads, yields or any other cash flows based on functions of these curves can readily be priced
using Monte Carlo methods. Moreover, for m = n = 1 numerical algorithms based on Li,
Ritchken and Sankarasubramanian (1995) can be implemented to price American claims.6

Since ψ1(t), ψ2(t) are of size m, the riskless forward rate dynamics are Markov in 2m vari-
ables. Since φ1(t), φ2(t) and φ3(t) are of size n, φ4(t) is of size m and φ5(t) is of size m × n,
forward credit spreads are Markov in 3n + m + mn variables. Note also that φ1(t) and ψ1(t)
are the only non-predictable processes. All the other state variables are path statistics that
accumulate information based on the realizations of the innovations.7

When the stochastic driven process of credit spreads are shut down (n = 0) and interest
rates are driven by one stochastic driver, (m = 1), this model is similar to that of Ritchken and
Sankarasubramanian (1995). For the more general case, when m > 1 and n = 0, the model
corresponds to that of Inui and Kijima (1998).

When n is released from 0 we get some new models for risky credit spreads and bond prices.
The total number of state variables is 3n + 3m + mn. Given these state variables, we can re-
construct the riskless and risky term structure at any time. Unfortunately, as m and n increase,
the number of state variables increases rather rapidly. For example, if the riskless term structure
is driven by m = 3 factors and credit spreads are driven by n = 2 factors, the total number of
state variables is 21. For pricing derivatives on a single name, this number of state variables
is not large enough to provide an excessive computational burden. However, when we consider
multiple names, this could become an issue.

To simplify the Markovian model, we can either change the structure of the volatility or
reduce the dimension of the driven processes. The rest of this section will focus on simplifying
the volatility structures further.

2.1 Simplified Volatility Structure

Let κi(t) = κ(t), i = 1, ...,m and θj(t) = θ(t), j = 1, ..., n. With this simplification, the Markov-
ian model simplifies in a fairly dramatic way. Let us redefine the vectors A(t, T ) and B(t, T ) as

6Monte Carlo methods, along the lines of Longstaff and Schwartz (2001) can also be used to price American

claims.
7If additional restrictions are placed on the volatility assumptions, then it is possible for these path statistic

state variables to drop out. For example, if all the volatility structures are in the Vasiceck class, then the path

statistic state variables are unnecessary.
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the following scalars:

A(t, T ) = e−
∫ T

t
κ(u)du, α(t, T ) =

∫ T

t
A(t, u)du

B(t, T ) = e−
∫ T

t
θ(u)du, β(t, T ) =

∫ T

t
B(t, u)du.

Then the volatility structures for forward rates and forward credit spreads can be rewritten as

σf (t, T ) = σr(t)A(t, T ) (24)

σλ(t, T ) = σλ(t)B(t, T ). (25)

where σr(t) = (σr1(t), ..., σrm(t)) and σλ(t) = (σλ1(t), ..., σλm(t)).

Under this definition, we have:

Proposition 3

Given the dynamics of the forward rates and forward credit spreads are:

df(t, T ) = µf (t, T )dt + σf (t, T )dz(t) given f(0, T ) ∀T ≤ T ∗

dλ(t, T ) = µλ(t, T )dt + σλ(t, T )dw(t) given λ(0, T ) ∀T ≤ T ∗.

with the volatility structures curtailed as in equations (24) and (25). Then, future forward rates

and forward credit spreads can be represented by a Markovian system. In particular:

(i) The forward rates are Markov in r(t) and ψ2(t). Forward rates at date t relate to forward

rates at date 0 via:

f(t, T ) = f(0, T ) +A(t, T )[r(t) − f(0, t)] + α(t, T )A(t, T )ψ2(t) (26)

where

ψ2(t) =
∫ t

0
σr(u)σ′r(u)A

2(t, u)du

and the dynamics of the state variables are:

dr(t) = [κ(t)(f(0, t) − r(t)) + ψ2(t) +
∂

∂t
f(0, t)]dt + σr(t)dz(t)

dψ2(t) = [σr(t)σ′r(t) − 2κ(t)ψ(t)]dt

(ii) Forward credit spreads are Markov in four state variables, λ(t), φ2(t), φ4(t), and φ5(t). In

particular:

λ(t, T ) = λ(0, T ) +B(t, T )[λ(t) − λ(0, t)] + β(t, T )B(t, T )φ2(t)

+ [A(t, T ) −B(t, T )]φ4(t) + [α(t, T )B(t, T ) + β(t, T )A(t, T )]φ5(t) (27)
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where

φ2(t) =
∫ t

0
σλ(u)σ′λ(u)B

2(u, t)du

φ4(t) =
∫ t

0
σr(u)Σσ′λ(u)A(u, t)β(u, t)du

φ5(t) =
∫ t

0
σr(u)Σσ′λ(u)A(u, t)B(u, t)du

are now all scalars with dynamics:

dφ2(t) = [σλ(t)σ′λ(t) − 2θ(t)φ2(t)]dt

dφ4(t) = [φ5(t) − κ(t)φ4(t)]dt

dφ5(t) = [σr(t)Σσ′λ(t) − (κ(t) + θ(t))φ5(t)]dt

dλ(t) = µλ(t)dt + σλ(t)dw(t),

where: µλ(t) = θ(t)[λ(0, t) − λ(t)] + ∂
∂tλ(0, t) + φ2(t) − (κ(t) − θ(t))φ4(t) + 2φ5(t).

Proof: See Appendix.

When m = 1, n = 0, this model is the exact form of the Ritchken and Sankarasubra-
manian (1995) model. For m = 1, n = 1 there are now a total of 6 state variables.8 As m and
n increase beyond 1, the number of state variables remains unchanged. Indeed, under the sim-
plified volatility structures, the multifactor representations for interest rates and credit spreads
can both be reduced to one factor representations. An advantage of the models presented here is
that forward credit spreads and forward riskless rates can have arbitrary correlation, and interest
rates and spreads can be curtailed to be non negative. This stands in contrast to the Vasicek
models, where rates can be negative, and the square root Cox Ingersoll Ross type models, where
correlations cannot be arbitrary with interest rates remaining nonnegative.

Given an analytical representation for forward rates and risky forward credit spreads, using
equations (1) and (5) we can compute bond prices as:

P (t, T ) =
P (0, T )
P (0, t)

e−(r(t)−f(0,t))α(t,T )−α2 (t,T )
2

ψ(t)

Π(t, T ) = (1 −N(t))
S(0, T )
S(0, t)

P (t, T )K(t, T )

where

ln(K(t, T )) = −(λ(t) − λ(0, t))β(t, T ) − β2(t, T )
2

φ2(t)

− (α(t, T ) − β(t, T ))φ4(t) − α(t, T )β(t, T )φ5(t).
8In the previous section we established Markovian models with 3m + 3n + mn state variables. Hence for

m = n = 1 we have 7 state variables. Actually, for the special case of one factor models of interest rates and

spreads, the volatility structures in this section are of equal generality to those in the previous section. For one

factor models, the dynamics of φ1(t) and φ3(t) in the previous section can be combined into the dynamics of λ(t),

reducing the number of state variables to six.
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2.2 The Importance of Interest Rate-Credit Spread Correlation

In this section we illustrate the model with m = 1 and n = 1 and 6 state variables, by examining
the pricing of two specific credit derivatives that have similar designs but very different exposures
to correlation risk between interest rates and credit spreads.

Our first contract allows the holder to return the risky bond at date T provided it has not
defaulted and in return receive a payment that guarantees a particular spread over Treasury.
The defaultable bond matures at date T ∗ and at date t is priced at Π(t, T ∗). The expiration
date of the option is T < T ∗ and the predetermined spread over Treasury (strike) is k. In
particular, if the firm has not defaulted at date T , the holder can exchange the bond for a price
of e−k(T ∗−T )P (T, T ∗). So this credit spread put (CSP) option has the payoff function:

CSP (T, T ;T ∗) = 1{τ>T}
(
e−k(T

∗−T )P (T, T ∗) − Π(T, T ∗)
)+

,

where τ is a stopping time of default. Following Lando (1998), the credit spread put option
price at time t is:

CSP (t, T, T ∗) = Et

[
e−
∫ T

t
r(s)+λ(s)ds

(
e−k(T

∗−T )P (T, T ∗) − Π(T, T ∗)
)+
]
.

The value of such a contract clearly depends on the joint dynamics of the riskless and risky term
structures.

Our second contract is somewhat similar. In contrast to a payoff that depends on the
spread over a default-free bond at expiration, the payoff of this contract guarantees a minimum
predetermined yield. In particular, the payoff function of this put option (PO) with strike of
yield K and maturity of T on the defaultable bond Π(T, T ∗) with T < T ∗ is:

PO(T, T, T ∗) = 1{τ>T}
(
e−K(T ∗−T ) − Π(T, T ∗)

)+
.

Following Lando (1998), the price of put option on default bond at time t is

PO(t, T, T ∗) = Et

[
e−
∫ T

t
r(s)+λ(s)ds

(
e−K(T ∗−T ) − Π(T, T ∗)

)+
]

The above two contracts, can be very easily priced using Monte Carlo simulation, where we track
the dynamics of the state variables and recreate the term structures at the expiration date. In
particular, we assume that the riskless term structure is flat, f(0, t) = 0.05,∀0 ≤ t ≤ T ∗,
σr(t) = 0.04

√
r(t), and κ = 0.01. Further we assume that the credit spread term structure is

also flat, λ(0, t) = 0.02,∀0 ≤ t ≤ T ∗, σλ = 0.03
√
λ(t), and θ = 0.01.

Figure 1 shows the sensitivity of the two options to the correlation between spreads and
interest rates. In this figure the underlying bond is a five year discount bond, and the option
expires in one year. The strike price of the credit spread option is k = 0.02 and the strike of the
fixed yield put option is K = 0.07.

12



Figure 1 Here

The figure shows that the two contracts have very different sensitivities to correlation. In
particular, the fixed yield put option is much more sensitive to interest rate-credit spread cor-
relation than the fixed credit spread contract.

The bottom panel of Figure 1 shows the prices of the different fixed yield put options as
the expiration date increases. The underlying bond is a five year discount bond. The prices are
shown for three different correlation levels. The figure clearly illustrates how important it is to
accurately access the correlation between interest rates and credit spreads. Ignoring correlation
effects can have profound implications for pricing particular derivative contracts.

In a general HJM paradigm, these types of contracts would be much more difficult to price
since the Markovian property would not hold, and in the simulations, the entire term structures
at each time partition would have to be tracked. In contrast, in the above examples, only 6
state variables need to be tracked.

3 Correlated Defaultable Bonds Case

So far our models for credit derivatives have focused on contracts on single names, and have
not taken into account that groups of firms can be highly interdependent, with a single default
of a firm possibly creating a cascade of defaults, or downgrades. In this section we consider
models involving multiple bonds where default correlation is introduced in two ways. First, we
allow the intensities of defaults of different firms to be correlated. Conditioning on these state
variables, however, implies that defaults are independent events and default correlation arises
only because of the common influence on the intensities. As a result, clustering of defaults
is unlikely to obtain. Second, to capture what Jarrow and Yu (2001) refer to as “industrial
organization interdependencies”, we allow defaults of any one firm to influence the intensities of
other firms. Our approach is somewhat similar to that of Yu (2002), who also shows that this
type of approach has advantages over copula methods that build in dependence in rather ad-hoc
ways whereby spillover or ripple effects cannot easily be handled. Yu models the hazard process
directly allowing defaults of one firm to impact the hazard rates of other firms, with jumps.
This, then leads to bond prices having jumps. In our approach, we specify the impact factors on
prices directly and from it we back out the intensity process with jumps. The structural form
for our impact factors is fairly flexible. As in Jarrow and Yu (2001), our impact factors could
be set up such that there are “primary” or even hypothetical bonds, driven by Cox processes,
whose events trigger jumps in the intensities of “secondary” bonds.

In the simplest model the “primary” bond, bond 1 say, could be driven by a Poisson process,
N1, with constant intensity λ1, and all individual “secondary” bonds could be driven by inde-
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pendent Poisson processes. In particular, bond i, i = 2, 3, ..., � is driven by a Poisson process
with parameter λi. Assume the impact factors are q1j = 1 and qjk = 0 for k = 1, 2, 3, ..., � and
j = 2, 3, ..., �. This implies that if the primary bond defaults, every secondary bond j will lose
all its value. However, any secondary bond defaulting would not impact others. For this setup
the exact time to default of bond j is τj where:

τj = inf{t > 0|N1(t) +Nj(t) > 0},

implying default takes place if either an idiosyncratic or systematic shock strikes the firm. In
our more general model, the impact factors need not be so simple. As we will see the shocks
could be permanent, or temporary, and the Poisson processes could be replaced by correlated
Cox processes.

To make matters specific, assume that there are � “bonds” ( actual or pseudo) in the economy
that could impact or be impacted by any “ default” event. Let Πi(t, T ), i = 1, ..., �, be the date
t price of the ith bond that matures at date T . Define a Cox process that is unique for each
bond. Let Ni(0) = 0 and τi = inf{t > 0|Ni(t) > 0} i = 1, ..., �. The risky bond price is given by:

Πi(t, T ) =

∏

j=1

(1 − qij(t− τj)Nj(t))e
−
∫ T

t
(f(t,u)+λc

i (t,u))du i = 1, ..., � (28)

Here, qij(x) is a function of x. As an example, we define qij(x) ≡ qije
−γij(x), where qij is a

constant with 0 ≤ qij ≤ 1and γij(x) is a nonnegative function of x. Here τj is the last default
time of bond j. For a zero recovery bond i, qii = 1 and γii(x) = 0. If γij(x) = γij × (x)
then γij > 0, implies the impact of a default by bond j on bond i is temporary, with the γij ,
determining the speed of recovery. In contrast if γij = 0, the impact is permanent.

In general, λci (t, u) is no longer the forward credit spread because of the default impact from
other “bonds”. But if the function qij(t− τij) < 1, i �= j, we can define the function cij(·) as:
qij(t− τj) ≡ 1 − e−cij(t−τj ), i �= j, or

cij(t− τj) = − ln(1 − qij(t− τj)).

We can then rewrite equation (28) as

Πi(t, T ) = (1 −Ni(t))e
−
∫ T

t
(f(t,u)+λi(t,u))du i = 1, ..., � (29)

where
λi(t, u) = λci (t, u) +

∑
j �=i

cij(t− τj)Nj(t) (30)

now has the interpretation of a forward rate spread.

Further, define
dλci (t, T ) = µλi

(t, T )dt + σλi
(t, T )dw(t) (31)
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where µλi
(t, T ) is a predictable process, σλi

(t, T ) = (σλi1
(t, T ), ..., σλin

(t, T )), is a predictable n
dimensional vector process, and w(t) is n-dimensional Brownian motion with E(dz(t)dw(t)′) =
Σm×ndt. Then the dynamics of the credit spreads for firm i are:

dλi(t, T ) = µλi
(t, T )dt + σλi

(t, T )dw(t) +
∑
j �=i

cij(0)dNj(t) +
∑
j �=i

Nj(t)dcij(t− τj) (32)

Equation (28) can be rewritten as

Πi(t, T ) = Si(t, T )P (t, T ) (33)

where

Si(t, T ) =

∏

j=1

(1 − qij(t− τj)Nj(t))e
−
∫ T

t
λc

i (t,u)du. (34)

Applying Ito’s rule to equations (1) and (34) we obtain:

dP (t, T )
P (t, T )

= µp(t, T )dt + σp(t, T )dz(t) (35)

dSi(t, T )
Si(t, T )

= µsi(t, T )dt + σsi(t, T )dw(t) −
n∑
j=1

qij(0)dNj(t) −
n∑
j=1

Nj(t)dqij(t− τj) (36)

where

µp(t, T ) = r(t) +
1
2
σp(t, T )σ′p(t, T ) −

∫ T

t
µf (t, u)du

σp(t, T ) = −
∫ T

t
σf (t, u)du

µsi(t, T ) = λi(t) +
1
2
σsi(t, T )σ′si

(t, T ) −
∫ T

t
µλi

(t, u)du

σsi(t, T ) = −
∫ T

t
σλi

(t, u)du.

The dynamics of risky bond i is given by:

dΠi(t, T )
Πi(t, T )

=
dP (t, T )
P (t, T )

+
dSi(t, T )
Si(t, T )

+
dP (t, T )
P (t, T )

dSi(t, T )
Si(t, T )

.

Substituting equations (35) and (36) into the above equation leads to

dΠi(t, T )
Πi(t, T )

= µΠi(t, T )dt+ σp(t, T )dz(t) + σsi(t, T )dw(t)−
n∑
j=1

qij(0)dNj(t)−
n∑
j=1

Nj(t)dqij(t− τj)

where
µΠi(t,T ) = µp(t, T ) + µsi(t, T ) + σp(t, T )Σσ′si

(t, T ) (37)

Notice that this restriction is of the same form as the restriction with no impact factors, given
by equation (13).
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3.1 Markovian Models for Correlated Defaultable Bonds

We now develop a Markovian model by specifying the volatility structure as in Proposition 3.
In particular, for defaultable bond i, we assume the volatility structure is:

σλi
(t, T ) = σλi

(t)e−
∫ T

t
θi(u)du ≡ σλi

(t)Bi(t, T ). (38)

Here, the 1 × n vector σλi
(t) could depend on information on the term structure up to date t.

With this structure,

σsi(t, T ) = −σλi
(t)
∫ T

t
e−
∫ u

t
θi(x)dxdu ≡ −σλi

(t)βi(t, T ).

Notice, that for 0 ≤ u ≤ t ≤ T , we have:

σλi
(u, T ) = σλi

(u)Bi(u, t)Bi(t, T ) (39)

σsi(u, T ) = −σλi
(u)[βi(u, t) + βi(t, T )Bi(u, t)] (40)

and Bi(t, t) = 1, βi(t, t) = 0 and ∂βi(t,T )
∂T = Bi(t, T ).

Proposition 4

If the risk neutral dynamics of riskless forward rates and λci (t, T ) are given by

df(t, T ) = µf (t, T )dt + σf (t, T )dz(t) given f(0, T ) ∀T ≤ T ∗

dλci (t, T ) = µλi
(t, T )dt + σλi

(t, T )dw(t) given λi(0, T ) ∀T ≤ T ∗.

with the volatility structures restricted as in equations (24) and (25), then:

(i) Riskless forward rates are linked to riskless forward rates at date 0, by

f(t, T ) = f(0, T ) +A(t, T )[r(t) − f(0, t)] + α(t, T )A(t, T )ψ2(t)

where

ψ2(t) =
∫ t

0
σr(u)σ′r(u)A

2(t, u)du

and the dynamics of the state variables are defined in Proposition 3.

(ii) Risky forward credit spreads for bond i are given by:

λi(t, u) = λci (t, u) +
∑
j �=i

cij(t− τj)Nj(t)

with

λci (t, T ) = λci (0, T ) +Bi(t, T )[λci (t) − λci (0, t)] + βi(t, T )Bi(t, T )φi2(t)

+ [A(t, T ) −Bi(t, T )]φi4(t) + [α(t, T )Bi(t, T ) + βi(t, T )A(t, T )]φi5(t) (41)
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where dynamics of φi2, φi4 and φi5 are defined in appendix.

Proof: See Appendix.

Under our assumptions, the riskless term structure dynamics are unaffected by the addition
of price-impact effects on the risky bonds. Of course, the dynamics of the risky forward credit
spreads are affected by the temporary and/or permanent shocks, and their dynamics include
jump effects, which are independent of maturity.

Given the above equations, the riskless bond price, P (t, T ), and the risky bond price with
zero recovery, Πi(t, T ), at date t can be linked to their earlier prices at date 0, via the state
variables through:

P (t, T ) =
P (0, T )
P (0, t)

e−(r(t)−f(0,t))α(t,T )−α2 (t,T )
2

ψ(t)

Πi(t, T ) =
Si(0, T )
Si(0, t)

P (t, T )Ki(t, T )

where

ln(Ki(t, T )) = −(λci (t)−λci (0, t))βi(t, T )−β
2
i (t, T )

2
φi2(t)−(α(t, T )−βi(t, T ))φi4(t)−α(t, T )βi(t, T )φi5(t).

3.2 The Importance of Default Correlation and Systemic Risk

To illustrate the implementation of the model, and the importance of incorporating default cor-
relation and systemic risk, we consider pricing a credit derivative that is sensitive to correlation
in intensities as well as to the default impact factors and to a single systemic risk event. In
particular, assume the credit event is triggered by the first default of n defaultable bonds, called
First-to-Default (FTD) basket. This contract has a payoff at the time of the first default, τ , if
τ ≤ T ; or 0 if τ > T where T is the maturity date of the contract. In this example, we assume
that when default happens the contract holder will get cash flows from two sources. First, for the
defaulted bond, the holder will get the payoff which is the difference between a price calculated
by a pre-determined yield and the pre-default price; second, for the non-defaulted bonds, the
holder receives the sum of the payoff for each bond which is the difference between the price
calculated by a pre-determined yield and the price after default. That is, given default on the
ith bond, the payoff function is

Zi(τ) =
1
n


(e−Ki(T ∗−τ) − Πi(τ−, T ∗)

)+
+

n∑
j �=i

(
e−Kj(T ∗−τ) − Πj(τ, T ∗)

)+


 1τ≤T

where K
 is a pre-determined yield for bond �, � = 1, 2, ..., n. Since this contract is triggered
by the first default, the default can happen to any one of the n defaultable bonds. So we need
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to compute the conditional default probability for bond i given default. By Bayes rule, the
probability for the ith bond to default at the default time τ , given a default has occurred is:

pi(τ) =
λci (τ)
λc(t)

,

where λc(t) =
∑n
i=1 λ

c
i (t). Let τ be the first default time and let Z(τ) be the payout at default.

The FTD put option price at time t can be computed as:

PUTFTD(t, T, T ∗) = 1τ>tEt
[
exp

(
−
∫ τ

t
r(s)ds

)
Z(τ)

]

= 1τ>tEt
[
Eτ

(
exp

(
−
∫ τ

t
r(s)ds

)
Z(τ)

)]

= 1τ>tEt
[
exp

(
−
∫ τ

t
r(s)ds

)
Eτ (Z(τ))

]

= 1τ>tEt

[
exp

(
−
∫ τ

t
r(s)ds

) n∑
i=1

pi(τ)Zi(τ)

]

= 1τ>tEt

[∫ T

t
(
n∑
i=1

pi(s)Zi(s))λc(s) exp
(
−
∫ s

t
(r(u) + λc(u))du

)
ds

]

= 1τ>tEt

[∫ T

t
(
n∑
i=1

λci(s)Zi(s)) exp
(
−
∫ s

t
(r(u) + λc(u))du

)
ds

]

where the second last equation follows from Lando (1998).

As an illustration assume there are two risky bonds. We will use a two-factor square root
model for the riskless term structure and a two-factor model for each credit spread term struc-
ture. That is, m = n = l = 2. For simplicity, we assume the riskless term structure is flat and
forward rates are f(0, t) = 0.05,∀0 ≤ t ≤ T ∗. The volatility structure for forward rates is given
by:

σr(t) = (0.04
√
r(t), 0.03

√
r(t)), and κ = 0.1.

Further, we assume that both the initial credit spread term structures are flat, λ1(0, t) = 0.05
and λ2(0, t) = 0.03 ∀0 ≤ t ≤ T ∗. The volatility structures for the forward credit spreads are:

σλ(t) =

(
σλ1(t)
σλ2(t)

)
=

(
0.05

√
λ1(t) 0.03

√
λ1(t)

0.02
√
λ2(t) 0.04

√
λ2(t)

)
,

with θ = 0.1. The default impact matrix is asymmetric, and given by:

(qij) =

(
1 0.02

0.01 1

)
.

As an example, if bond 1 defaults, the impact on bond 2, is to depreciate the price by 2%.
Finally, we assume, both bonds have a maturity of 10 years and the “strike” prices are K1 = 0.1
and K2 = 0.08.
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In addition, we assume that there is a rare systemic risk event that is modeled as a Poisson
process with intensity λ. If this event occurs it triggers a default in both bonds. The default
setting of the intensity is 0. That is, unless specified, this systemic event is turned off. When
turned on, the impact matrix becomes:

(qij) =




1 1 1
0 1 0.02
0 0.01 1


 ,

where the first row now represents the default triggering event. To compute the price of the
claim, the interest rate variables, r(t) and φ2(t), need to be tracked over time. Given these
state variables, and the initial term structure, the entire riskless term structure can be recovered
whenever it is needed. Similarly, the eight state variables, λci (t), φi2(t), φi4(t), and φi5(t), i = 1, 2,
need to be tracked. Given their values, the risky credit spread curves can be computed. In this
application the risky money fund, exp(

∫ s
t r(u) + λc(u)du), also need to be tracked over time.

Figure 2 shows that the prices of FTD contracts for different expiration dates that range
from 0 to 10 years. The top panel compares the results for three different symmetric impact
factors where q12 = q21 = q. If there are no impact factors, prices are lower. As the symmetric
impact factor, q increases, the price of the put option increases.

Figure 2 Here

The second panel shows the impact of changing the default correlation in the intensities
between the two bonds. As the correlation increases, default risk becomes less diversifiable, and
the price of the default put option increases. The third panel shows the sensitivity of the FTD
option when we increase the variance in the credit spread. As this factor increases, the variance
expands and option prices increase.

The final panel shows the impact on prices when systemic events are considered. In partic-
ular, we permit the Poisson event parameter, λ, to be released from 0, and take on the values
of 4% and 8% per year. As this intensity increases, the risk neutral probability of a default
increases, and the payout of the option increases.

4 Conclusion

The market for credit derivatives on individual names and on portfolios of names has increased
dramatically over the last several years. Pricing credit derivatives relative to given term struc-
tures of interest rates and credit spreads is very important. To accomplish this, it is often the
case that researchers adopt models where interest rates are uncorrelated with credit spreads.
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While this typically does lead to simplifications, it can be the source of large errors. A common
valuation approach is to use the HJM paradigm that permits full information on the current
term structures to be incorporated into the model. However, without curtailing the structure
of volatilities and correlations, this paradigm leads to massive path dependence in pricing and
hedging. Our contribution here has been to curtail volatility structures in such a way that the
path dependence can be readily captured by a finite set of state variables.

In particular, we extend the HJM Markovian models of riskless bonds to Markovian models
of risky bonds. First we establish a multi-factor Markovian model for the case where interest
rates are driven by m stochastic drivers and forward credit spreads are driven by n correlated
stochastic drivers. Analytical expressions for both risky and riskless term structures were derived
in terms of 3n+ 3m+mn state variables. The resulting models have some desirable properties.
First, forward rate volatilities can be level dependent. Second, rates can be curtailed to be non
negative. Third, spreads and riskless rates can be correlated in an arbitrary way. Finally, for
pricing derivatives, the initial term structures of interest rates and credit spreads are taken as
given. The importance of correlation among spreads and riskless rates was highlighted through
illustrative examples where rates were always positive, volatilities were level dependent and
correlation could easily be adjusted from −1 to +1.

This paper also extended the analysis to consider multiple bonds, where default of any one
bond could impact the prices of others. To facilitate the fact that defaults could have ripple
effects, we introduced default impact factors, which could be temporary or permanent. We then
extended the model for pricing risky debt to incorporate these effects. To illustrate the model
we considered the price of a contract, which at the time of default of the first bond in a portfolio,
had a payout that was linked to the recovery rate of the defaultable bond, as well as on the
prices of the remaining bonds that were in the portfolio. The example showed the importance of
not only the correlations among the default intensities, but also the effect of the default impact
factors in pricing. The example also highlighted the importance of systemic risk, induced by an
event triggering multiple defaults in an industry.

The clustering property of defaults is an important property of our model that is consistent
with the high degree of correlation of defaults with the business cycle. Our models permit
issues of systemic risk to be addressed. In these models, the intensities of the events controlling
systemic risk are exogenously provided. As a result, the models can immediately be used to
assess the adequacy of value at risk systems during periods of crisis, that trigger a cascade of
defaults.

It remains for future research to empirically examine models in this family and perhaps
establish how many stochastic drivers are necessary to adequately model the credit spread
dynamics.
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Appendix

Lemma 1

Let G(t, T ) =
∫ T
t h(t, u)du where

dh(t, u) = µh(t, u)dt + σh(t, u)dw(t).

Then
dG(t, T ) = µG(t, T )dt + σG(t, T )dw(t)

where

µG(t, T ) =
∫ T

t
µh(t, s)ds − h(t)

σG(t, T ) =
∫ T

t
σh(t, s)ds.

Proof

The main tool in deriving these results is Fubini’s theorem for stochastic integrals. For a proof
of the above result see HJM (1992).

Proof of Proposition 1

If the dynamics are specified under the risk neutral measure, to avoid riskless arbitrage:

E[
dP (t, T )
P (t, T )

] = E[
dΠ(t, T )
Π(t, T )

] = r(t)dt

It immediately follows from equation (7) and (9) that, to avoid riskless arbitrage, under this
measure

1
2
σp(t, T )σ′p(t, T ) =

∫ T

t
µf (t, s)ds

Differentiating both sides with respect to T , we obtain the HJM no arbitrage restriction on the
drift term, namely:

µf (t, T ) = |σp(t, T )|σ′f (t, T ) (A.1)

Now consider the drift restriction on the riskless bond. We have:

µΠ(t, T ) − λ(t) = r(t)

Substituting equation (13) for µΠ(t, T ), we obtain

µp(t, T ) + µs(t, T ) + σp(t, T )Σσs(t, T ) − λ(t) = r(t).

Substituting for µs(t, T ), using equation (11), leads to:∫ T

t
µλ(t, u)du =

1
2
σs(t, T )σ′s(t, T ) + σp(t, T )Σσ′s(t, T ).
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Differentiating with respect to T , leads to

µλ(t, T ) = |σs(t, T )|σ′λ(t, T ) − σp(t, T )Σσ′λ(t, T ) − σf (t, T )Σσ′s(t, T ) (A.2)

Proof of Proposition 2

To prove the forward rate expression, substitute equations (17) and (18) into the drift restriction
equation, (14). This yields,

µf (t, T ) = (σr(u) ⊗A(u, t) ⊗A(t, T ) ⊗ σr(u) ⊗ [α(u, t) + α(t, T ) ⊗A(u, t)]

The result follows by substituting the above equation and using equation (18) in the expression:

f(t, T ) = f(0, T ) +
∫ t

0
µf (u, T )du +

∫ t

0
σf (u, t)dw(u)

To establish the forward credit spread equation, we begin with:

λ(t, T ) − λ(0, T ) =
∫ t

0
µλ(u, T )du +

∫ t

0
σλ(u, T )dw(u). (A.3)

Substituting equations (17), (18), (20) and (21) into (11) we obtain:

µλ(u, T ) = η1(u, t)B′(t, T ) + η2(u, t)(β(t, T ) ⊗B(t, T ))′ + η′3(u, t)B
′(t, T )

+A(t, T )η4(u, t) + α(t, T )η5(u, T )B′(t, T ) +A(t, T )η5(u, T )β′(t, T ) (A.4)

where

η1(u, t) = σλ(u) ⊗ σλ(u) ⊗ β(u, t) ⊗B(u, t) (A.5)

η2(u, t) = σλ(u) ⊗ σλ(u) ⊗B(u, t) ⊗B(u, t) (A.6)

η3(u, t) = (σr(u) ⊗ α(u, t))Σ ⊗ (σλ(u) ⊗B(u, t))

= 1m((σr(u) ⊗ α(u, t))′ ⊗ Σ ⊗ (σλ(u) ⊗B(u, t)) (A.7)

η4(u, t) = (σλ(u) ⊗ β(u, t))′Σ′ ⊗ (σr(u) ⊗A(u, t))

= 1n((σλ(u) ⊗ β(u, t))′ ⊗ Σ′ ⊗ (σr(u) ⊗A(u, t)) (A.8)

η5(u, t) = (σr(u) ⊗A(u, t))′ ⊗ Σ ⊗ (σλ(u) ⊗B(u, t)) (A.9)

Here we use the following property in the equations of η3(u, t) and η4(u, t),

(x⊗ y)Σ = x(y′ ⊗ Σ)

where x and y are any m dimensional row vectors and Σ is a m × n matrix. In particular, we
take x = 1m, in equations (A.7) and (A.8).

The result follows by substituting these expressions back into equation (A.3) and defining
φ1(t) =

∫ t
0 η1(u, t)du+

∫ t
0 σλ(u) ⊗B(u, t) ⊗ dw′(u) and φj(t) =

∫ t
0 ηj(u, t)du, for j = 2, .., 5. The

dynamics of the state variables follows from Ito’s lemma.
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Proof of Proposition 3

Under the simplified volatility structure, equation (A.4) can be rewritten as,

µλ(u, T ) = B(t, T )η1(u, t) + β(t, T )B(t, T )η2(u, t) +B(t, T )η3(u, t)

+A(t, T )η4(u, t) + [α(t, T )B(t, T ) + β(t, T )A(t, T )]η5(u, t). (A.10)

where

η1(u, t) = σλ(u)σ′λ(u)β(u, t)B(u, t)

η2(u, t) = σλ(u)σ′λ(u)B
2(u, t)

η3(u, t) = σr(u)Σσ′λ(u)α(u, t)B(u, t)

η4(u, t) = σr(u)Σσ′λ(u)A(u, t)β(u, t)

η5(u, t) = σr(u)Σσ′λ(u)A(u, t)B(u, t)

Further, equation (A.3) can be simplified. Substituting (A.10) into (A.3), we have

λ(t, T ) = λ(0, T ) +B(t, T )φ1(t) + β(t, T )B(t, T )φ2(t) +B(t, T )φ3(t)

+ A(t, T )φ4(t) + [α(t, T )B(t, T ) + β(t, T )A(t, T )]φ5(t)

+ B(t, T )
∫ t

0
σλ(u)B(u, t)dw(u) (A.11)

where φj(t) =
∫ t
0 ηj(u, t)du, for j = 1, 2, .., 5. Dividing both sides by B(t, T ) and grouping all

terms involving T on the right hand side, we obtain:

λ(t, T ) − λ(0, T )
B(t, T )

− β(t, T )φ2(t) − A(t, T )
B(t, T )

φ4(t) − [α(t, T ) + β(t, T )
A(t, T )
B(t, T )

]φ5(t)

= φ1(t) + φ3(t) +
∫ t

0
σλ(u)B(u, t)dw(u)

Since the right hand side is independent of T , and the left hand side holds for all T ≥ t, taking
T = t, we obtain:

λ(t, T ) − λ(0, T )
B(t, T )

− β(t, T )φ2(t) − A(t, T )
B(t, T )

φ4(t) − [α(t, T ) + β(t, T )
A(t, T )
B(t, T )

)φ5(t)

= λ(t) − λ(0, t) − φ4(t)

which upon rearranging leads to:

λ(t, T ) = λ(0, T ) +B(t, T )[λ(t) − λ(0, t)] + β(t, T )B(t, T )φ2(t)

+ [A(t, T ) −B(t, T )]φ4(t) + [α(t, T )B(t, T ) + β(t, T )A(t, T )]φ5(t) (A.12)
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The forward credit spreads λ(t, T ) are Markov in the four state variables, λ(t), φ2(t), φ4(t),
and φ5(t) with dynamics:

dφ2(t) = [σλ(t)σ′λ(t) − 2θ(t)φ2(t)]dt

dφ4(t) = [φ5(t) − κ(t)φ4(t)]dt

dφ5(t) = [σr(t)Σσ′λ(t) − (κ(t) + θ(t))φ5(t)]dt

dλ(t) = µλ(t)dt + σλ(t)dw(t)

The dynamics of the forward rates can be obtained using the same steps as the forward
credit spreads and hence is not provided. For the case where n = 1 see Ritchken and Sankara-
subramanian (1995).

Proof of Proposition 4

Now consider the dynamics of λci (t, T ). As in section 2, we have:

λci (t, T ) = λci (0, T ) +Bi(t, T )[λci (t) − λci (0, t)] + βi(t, T )Bi(t, T )φi2(t)

+ [A(t, T ) −Bi(t, T )]φi4(t) + [α(t, T )Bi(t, T ) + βi(t, T )A(t, T )]φi5(t) (A.13)

Given the relationship of λci (t, T ) and λi(t, T ) in (30), the forward credit spreads λi(t, T ) are
Markov in default events processes Nij(t), j = 1, ..., n, and the four state variables, λci(t), φi2(t),
φi4(t), and φi5(t) with dynamics:

dφi2(t) = [σλi
(t)σ′λi

(t) − 2θi(t)φi2(t)]dt

dφi4(t) = [φi5(t) − κ(t)φi4(t)]dt

dφi5(t) = [σr(t)Σσ′λi
(t) − (κ(t) + θi(t))φi5(t)]dt

dλci (t) = µλi
(t)dt + σλi

(t)dw(t).
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Figure 1 

The Effects of Correlation on Prices 
 
The top figure shows the sensitivity of two option contracts to the correlation between credit spreads and 
interest rates. The underlying bond is a five year corporate discount bond. The option contracts both expire 
in one year. The credit spread put contract allows the holder to return the bond at a predetermined discount 
rate of k=2% above the riskless yield rate at maturity. In contrast, the fixed yield put option specifies a 
fixed strike of 7%, regardless of riskless yields. The initial riskless term structure is flat at 5\% and the 
initial credit spread curve is flat at 2%. The bottom figure shows the sensitivity of fixed yield puts to 
differing expiration dates, for three levels of correlation. 
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Figure 2 
Sensitivity of First to Default Options 

 
The figures show the sensitivity of First To Default Put Options for different expiration dates. The initial 
credit spread curves are all flat at 5%, for the first, and 3% for the second. The riskless term structure is flat 
at 5%. The first figure shows the effects of increasing the impact factor, q, which is assumed to be 
symmetric.  The second shows the sensitivity of changing the default correlation among the intensities. The 
third shows the effects of increasing the variance of the credit spread. The final figure shows the effects of 
increasing systemic risk. 
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