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Approximating GARCH-Jump Models, Jump-Diffusion Processes, and

Option Pricing

ABSTRACT

This paper considers the pricing of options when there are jumps in the pricing kernel and
correlated jumps in asset prices and volatilities. We extend theory developed by Nelson (1990)
and Duan (1997) by considering limiting models for our resulting approximating GARCH-Jump
process. Limiting cases of our processes consist of models where both asset price and local
volatility follow jump diffusion processes with correlated jump sizes. Convergence of a few
GARCH models to their continuous time limits are evaluated and the benefits of the models
explored.

(GARCH option models, stochastic volatility models with jumps, limiting GARCH with Jump
processes)



Up until the 1990s the literature on continuous time models, used in theoretical finance and
especially in derivative modeling, and discrete time models, often favored in empirical studies,
developed along very separate lines. Most of the discrete time models were of the generalized
autoregressive conditionally heteroskedastic (GARCH) type, while the continuous time mod-
els were based on diffusion models. In the early 1990s researchers began to reconcile the two
approaches. In particular, Nelson (1990) showed that as the sampling frequency increased,
the volatility process generated within some GARCH models converged in distribution towards
well defined solutions of stochastic differential equations. Duan (1997) extended this work and
showed that most of the existing bivariate diffusion models that had been used to model asset
returns and volatility could be represented as limits of a family of GARCH models. As a result,
even if one prefers modeling prices and volatilities by a bivariate process, there may be advan-
tages in considering GARCH techniques. For example, by suitably curtailing the parameters of
generalized GARCH processes, we can obtain European and American option prices under the
stochastic volatility models of Hull and White (1987), Scott (1987), Wiggins (1987), Stein and
Stein (1991), and Heston (1993).

Unfortunately, there is now overwhelming empirical evidence that indicates that stock price
processes cannot be adequately characterized by bivariate diffusions, and that incorporating
jump components in both price and in volatility is necessary. For example, Bates (2000) and
Pan (2002) consider models where prices follow a jump-diffusion process with volatility being
characterized by a correlated diffusive stochastic process. Both authors show that such models
are incapable of capturing empirical features of equity index returns or option prices, and they
attribute this to the fact that volatility itself may contain jumps. More recently, Eraker, Jo-
hannes and Polson (2003) examine the jump in volatility models proposed by Duffie, Singleton
and Pan (1999), and provide a study that shows that the addition of jumps in volatility provide
a significant improvement to explaining the returns data on the S&P 500 and Nasdaq 100 index,
beyond a stochastic volatility model with just jumps in prices.

To date, the GARCH approximating models that have been considered in the literature are
set up for stochastic volatility diffusions. In light of the importance of jumps, both in price and
volatility, the current GARCH approximating models are inadequate. The primary purpose of
this paper is to propose a new set of GARCH models that include, as limiting cases, processes
characterized by stochastic volatility with jumps in price and volatility. The secondary purpose
of this paper is to explore the potential advantages of these GARCH with jump models over
their continuous time counterparts.

The discrete time model on which we rely in constructing our limiting models is that of
Duan, Ritchken and Sun (2004) (hereafter DRS). The DRS (2004) model has the property that
the conditional returns have fat tails and are skewed. As a result, local skewness and kurtosis
present in data can easily be matched. Further, much of the volatility smile observed in option
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prices can be well explained by the DRS (2004) model. In addition, estimating the parameters
of the DRS (2004) can be readily accomplished using historical time series data and/or panels of
option prices, using standard maximum likelihood estimation techniques. This simplicity stands
in contrast to the rather delicate task of estimating parameters for continuous-time processes
when the volatility is a latent, nonobservable state variable, which, together with price, contain
diffusive and jump elements.1

We develop an approximating GARCH-Jump option pricing model that can be viewed in
parallel with the discrete time binomial option pricing models. Specifically, the binomial model,
which has the ability to approximate a variety of different diffusive or jump processes, depending
on how the limits are taken, serves as a work-horse for pricing European and American options.
We will show that our approximating GARCH-Jump model has the ability to lead to a wide
variety of stochastic volatility models that incorporate jumps and diffusive elements in prices and
volatilities, and also has the property that option prices can be relatively efficiently computed.

While our approximating GARCH-Jump models can be viewed as filters for continuous-
time stochastic volatility models with jumps in price and volatility, they also may be useful for
approximating the continuous time stochastic volatility models with jumps. Indeed, we find that
option prices generated under certain GARCH-Jump processes may converge to the theoretical
continuous time option prices faster than option prices computed under Euler discretization
schemes of the continuous time processes. As a result, even if one believes the true process
to be a continuous-time jump diffusion process for both price and volatility, our approximating
GARCH-Jump models may still be useful because they could provide excellent numerical schemes
for computing option prices under the true processes.

One reason for considering limiting models is to take advantage of the convenient analytical
properties of the limiting model; for example, the limiting model may enable the derivation
of a closed-form pricing formula for certain options. When the discrete-time model becomes
increasingly complex to accommodate empirical data features, its corresponding limiting model
is expected to lose its analytical tractability. Indeed, the three limiting models presented in this
paper do not appear to have closed-form pricing solutions even for European options. Lack of a
closed-form solution need not be considered a weakness. There is no closed-form pricing formula
for the American-style options in the constant-volatility Black-Scholes framework. However,
it does not impede the Black-Scholes model’s applicability because reliable numerical methods

1While in the last decade, significant advances in econometric methodology have been made, these estima-

tion problems are still fairly delicate. Eraker, Johannes and Polson (2003) provide an excellent review of the

difficulties in adopting standard MLE or GMM approaches. Singleton (2001) discusses an approach using char-

acteristic functions. An alternative approach based on simulation methods using Efficient Method of Moments,

and Monte Carlo Markov Chains does resolve some of these issues. For an overview on econometric techniques to

estimate continuous-time models see Renault (1997), Jacquier, Polson, and Rossi (1994), Eraker, Johannes and

Polson (2003), and the references therein.
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are available for such options. In short, the purpose of obtaining limiting models in this paper
has little to do with closed-form solutions.2 Rather, we want to gain further theoretical un-
derstanding on a new class of continuous-time option models involving jumps in volatility from
a discrete-time perspective, or vice versa. Furthermore, we want to rely on such a theoretical
linkage to open up the possibility of employing the convenient maximum likelihood estimation
method and the numerical pricing techniques associated with the GARCH family of models for
a new class of continuous time models with jumps in volatility.3

The paper proceeds as follows. In the first section we establish the basic setup for the
pricing kernel and for the dynamics of the asset price over ever-shrinking trading intervals. This
approximating model extends the DRS (2004) model by introducing the element of interval
length. Our generalization of the DRS (2004) model allows for exploring limiting behavior. In
section 2 we examine in detail some limiting cases of our model. We focus on models that
converge to processes containing diffusive and jump elements in both prices and/or volatilities.
When jumps are shut down in our model, then we are left with standard approximating GARCH
processes for which it is possible to obtain limiting forms that lead to options being priced
as in Heston (1993), Hull and White (1987), Scott (1987), and others. Further, when our
approximating GARCH process is curtailed so that volatility is no longer stochastic, but jumps
allowed in prices, our limiting model nests the jump-diffusion model of Merton (1976), or the
more general model of Naik and Lee (1990). Of interest in this paper, however, is the more
general case, when our limiting models have both diffusive and jump elements in prices and
volatilities. This allows us to have proxies for the time series models used in Eraker, Johannes
and Polson (2003) as well as for jump-diffusion options priced along the lines of Duffie, Singleton
and Pan (1999). For the most part we focus on equilibrium models where the dynamics of prices
under both the physical process as well as the risk neutral process are well specified. This allows
us to use standard maximum likelihood estimation on the time series, as well as panel data
of options, to readily estimate and/or calibrate the parameters. However, as is fairly common
in the derivatives literature, we could focus on the risk neutral process alone. If we do this,
then less structure is required in the drift term of the asset, and our approximating GARCH
with jumps models can be further generalized. In section 3 we conduct simulation experiments
designed to provide an indication of the speed of convergence of option prices. We compare
prices obtained by Euler and our GARCH-Jump approximating schemes, with true prices, and
demonstrate the speed of convergence of the GARCH-Jump prices to their jump-diffusion limits.

2The notion of closed-form solutions has in the literature been subjected to a wide range of interpretations.

For example, the “closed-form” stochastic-volatility option pricing model of Heston (1993) requires numerically

evaluating a Fourier inversion, and the Fourier inversion method does not work for American and/or exotic

options. The “closed-form” GARCH option model of Nandi and Heston (2001) requires numerically solving a

difference equation system in addition to a numerical Fourier inversion, and is also limited to European options.
3The GARCH-based numerical pricing techniques are, for example, Ritchken and Trevor (1999) and Duan and

Simonato (2001).
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Section 4 concludes.

1 The Basic Setup

We consider a discrete-time economy for a period of [0, T ] where trading takes place at any of
the n + 1 trading points 0, ∆t, 2∆t...., n∆t where ∆t = T

n . Uncertainty is defined on a complete
filtered probability space (Ω,F , P) with filtration F = (Ft)t∈{0,∆t,2∆t,...,n∆t=T} where F0 contains
all P-null sets in F . Let mi∆t be the marginal utility of consumption at date i∆t.

For pricing to proceed, the joint dynamics of the asset price, and the pricing kernel, mi∆t
m(i−1)∆t

,
needs to be specified. We have

Si∆t = EP

[
Si∆t

mi∆t

m(i−1)∆t

∣∣∣∣∣F(i−1)∆t

]
(1)

where Si∆t is the total payout, consisting of price and dividends. The expectation is taken
conditional on the information up to date (i− 1)∆t, under the physical measure P.

We assume that the dynamics of this pricing kernel, mi∆t/m(i−1)∆t, is given by:

mi∆t

m(i−1)∆t
= ea(∆t)+bJi(∆t)

√
∆t (2)

where Ji(∆t) is a standard normal random variable plus a Poisson random sum of normally
distributed variables. That is,

Ji(∆t) = X
(0)
i +

Ni(∆t)∑

j=1

X
(j)
t (∆t) (3)

where X
(0)
i ∼ N(0, 1) and X

(j)
i (∆t) ∼ N(µ(∆t), γ2(∆t)) for j = 1, 2, ..., and Ni(∆t), i = 1, 2, ...n

are a sequence of independent Poisson random variables with parameter λ∆t. Although we have
assumed a constant λ, our theoretical results remain valid if the Poisson parameter is stochastic,
and at each date, i∆t, is F(i−1)∆t-measurable. The random variables, X

(j)
i , are independent for

j = 0, 1, 2... and i = 1, 2, ..., n.

The asset price, Si∆t, is assumed to follow the process:

Si∆t

S(i−1)∆t
= efi∆t(∆t)+

√
hi∆tJ̄i(∆t)

√
∆t (4)

where J̄i(∆t) is a standard normal random variable plus a Poisson random sum of normal random
variables. In particular:

J̄i(∆t) = X̄
(0)
i +

Ni(∆t)∑

j=1

X̄
(j)
i (∆t) (5)
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where X̄
(0)
i ∼ N(0, 1) and X̄

(j)
i (∆) ∼ N(µ̄(∆t), γ̄2(∆t)) for j = 1, 2, .... The random variables,

X̄
(j)
i , are independent for j = 0, 1, 2... and i = 1, 2, ..., n. Furthermore, for i = 1, 2, ..., n:

Corr(X(j)
i , X̄

(j′)
i′ ) =

{
ρ if i = i′ and j = j′

0 otherwise
(6)

and Ni(∆t), i = 1, 2.., n is the same sequence of Poisson random variables as in the pricing
kernel.

The expected value, EP(J̄i(∆t)|F(i−1)∆t), and variance, V arP(J̄i(∆t)|F(i−1)∆t), of J̄i(∆t)
are

EP(J̄i(∆t)) = λµ̄(∆t)∆t (7)

V arP(J̄i(∆t)) = 1 + λγ̂2(∆t)∆t (8)

where γ̂2(∆t) = µ̄2(∆t) + γ̄2(∆t).

The Poisson random variable provides a random number of shocks in period i. Given that
the number of shocks in a particular period is some nonnegative integer k, say, the logarithm of
the pricing kernel for that period consists of a draw from the sum of k + 1 normal distributions,
while the logarithmic return of the asset also consists of a draw from the sum of k + 1 normal
random variables that are correlated with the elements in the pricing kernel. In either case, the
first normal random variable is standardized to have mean 0 and variance 1 because its location
and scale have already been reflected in the model specification. The structure for the means
and variances, µ̄(·) and γ̄2(·) as functions of time are the same as those for µ(·) and γ(·) in the
pricing kernel.

The local variance of the logarithmic returns for date i∆t, viewed from date (i − 1)∆t is
hi∆tV ar(J̄i∆t)∆t = hi∆t(1 + λγ̂2(∆t)∆t)∆t. We shall refer to hi∆t as the local scaling factor
because it differs from local variance by a constant. In general, the local scaling factor, hi∆t,
can be any predictable process. We shall assume,

h(i+1)∆t = H(hi∆t, J̄i∆t). (9)

DRS (2004) considered a special case of this model with ∆t = 1, and an updating process of the
non-linear asymmetric GARCH (NGARCH) form:

hi+1 = β0 + β1hi + β2hi


 J̄i − EP(J̄i)√

V arP(J̄i)
− c




2

. (10)

Here β0 is positive, and β1 and β2 are nonnegative to ensure that the local scaling process is
positive. J̄i in the last term is normalized to make this equation comparable to the NGARCH
model which typically uses a random variable with mean 0 and variance 1. Notice that when
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λ = 0 the model reduces to the NGARCH-Normal process used by Duan (1995). When λ

is released from 0, the innovations are a random mixture of normals. This model, called the
GARCH-Jump model, was empirically tested by DRS (2004), who showed that the inclusion of
“jumps” significantly improved the fit of historical time series of the S&P 500, as well as helping
to explain a significant portion of the volatility smile in option prices. Note that by Duan (1997),
the process in equation (10) is strictly stationary if β1 +β2(1+c2) ≤ 1. The unconditional mean
of hi is finite and equals β0/

[
1− β1 − β2(1 + c2)

]
if β1 + β2(1 + c2) < 1. The model we consider

is more general, in that the dependence on time increments is made explicit. For example, one
of the simplest updating schemes we consider has the form:

h(i+1)∆t − hi∆t = β0∆t + hi∆t(β1 − 1)∆t + β2hi∆t


 J̄i(∆t)−EP(J̄i(∆t))√

V arP(J̄i(∆t))
− c




2

∆t. (11)

Notice that when ∆t = 1, the updating equation reduces to the standard NGARCH-Jump model
given by equation (10).

For simplicity, we assume that the continuously compounded risk-free interest rate is con-
stant, say, r.4 Given the dynamics of the pricing kernel and the stock price, the following
restrictions must hold:

EP

(
mi∆t

m(i−1)∆t
|F(i−1)∆t

)
= e−r∆t (12)

EP

(
mi∆t

m(i−1)∆t

Si∆t

S(i−1)∆t
|F(i−1)∆t

)
= 1. (13)

These equilibrium conditions impose a specific form on the function, a(∆t) and fi∆t(∆t). In
particular, substituting equation (2) into (12) uniquely identifies a(∆t). Further substituting
equations (2) and (4) into (13), leads eventually to the following restriction on f(·):

fi∆t(∆t) = (r − hi∆t

2
− bρ

√
hi∆t)∆t + λκ(∆t)(1−Ki(hi∆t))∆t (14)

where

κ(∆t) = ebµ(∆t)
√

∆t+
b2γ2(∆t)

2
∆t (15)

Ki(hi∆t) = e
√

hi∆t(µ̄(∆t)
√

∆t+bργ(∆t)γ̄(∆t)∆t)+hi∆t
2 (γ̄2(∆t)∆t). (16)

To summarize, then, under the physical measure, P, we have:
4Note the constant interest rate assumption is consistent with the pricing kernel specification in equation (2)

but not a necessity. We make this assumption so that there is no need to specify an additional stochastic process

for the interest rate.
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[P1] Si∆t = S(i−1)∆te
fi∆t(∆t)+

√
hi∆tJ̄i(∆t)

√
∆t

h(i+1)∆t = H(hi∆t, J̄i(∆t))

where

J̄i(∆t) = X̄
(0)
i + ΣNi(∆t)

j=1 X̄
(j)
i (∆t) for i = 1, 2, ..., n

X̄
(0)
i ∼ N(0, 1)

X̄
(j)
i (∆t) ∼ N(µ̄(∆t), γ̄2(∆t)) for j = 1, 2, ...

Ni(∆t) ∼ Poisson(λ∆t)

and fi∆t(∆t) is defined by equation (14). The dynamics of the pricing kernel
is given by equation (2).

While the above dynamics allow pricing of derivative claims to proceed, it is often more
convenient to identify the dynamics of the risk neutral process, under which pricing claims
proceeds as if all traders were risk neutral. Following along lines identical to Proposition 1 of
DRS (2004), under the risk neutral measure Q the dynamics of the asset price is distributionally
equivalent to

[Q1] Si∆t = S(i−1)∆te
f̃i∆t(∆t)+

√
hi∆tJ̃i(∆t)

√
∆t

h(i+1)∆t = H(hi∆t, J̃i(∆t) + bρ
√

∆t)

where

J̃i(∆t) = X̃
(0)
i +

Ñi(∆t)∑

j=1

X̃
(j)
i (∆t) for i = 1, 2, ..., n

X̃
(0)
i ∼ N(0, 1)

X̃
(j)
i (∆t) ∼ N(µ̄(∆t) + bργ(∆t)γ̄(∆t)

√
∆t, γ̄2(∆t)) for j = 1, 2, ...

Ñi(∆t) ∼ Poisson(λ̃(∆t))

where λ̃(∆t) = λκ(∆t)∆t,

f̃i∆t(∆t) = fi∆t(∆t)− bρ
√

hi∆t∆t (17)

and fi∆t(∆t) is defined by equation (14).

Under measure Q, the overall dynamics of the asset price is similar in form to the dynamics
under the physical measure, P. In particular, the logarithmic return is still a random Poisson
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sum of normal random variables. However, under measure Q, the mean of each of the normal
random variables is shifted. Similarly, the sequence of independent Poisson random variables
under measure P, are still independent Poisson variables under measure Q but with a shifted
parameter.

Notice from the return equations of the asset under measures P and Q that

J̄i(∆t) = J̃i(∆t) + bρ
√

∆t. (18)

The expected value, EQ(J̃i(∆t)|F(i−1)∆t), and variance, V arQ(J̃i(∆t)|F(i−1)∆t), of J̃i(∆t) are:

EQ(J̃i(∆t)) = λ̃(∆t)
(
µ̄(∆t) + bργ(∆t)γ̄(∆t)

√
∆t

)
(19)

V arQ(J̃i(∆t)) = 1 + λ̃(∆t)γ̃2(∆t) (20)

where γ̃2(∆t) = (µ̄(∆t) + bργ(∆t)γ̄(∆t)
√

∆t)2 + γ̄2(∆t).

2 Limiting Forms of the GARCH-Jump Process

In our model, over each time increment, ∆t, the logarithmic return is a draw from a normal
distribution together with a Poisson mixture of normal random variables. As ∆t gets smaller
and smaller, the draws consists of a single normal random variable plus an occasional drawing
from another normal distribution. The likelihood of any additional draws will go to zero at a rate
faster than ∆t. The limiting behavior of the stock price will obviously depend on the structure
of the parameters of the normal innovations as functions of the time increments and upon the
specification of the predictable updating process, H(·), for the scaling factor, hi∆t. Although
one can obtain limiting models without jumps, (λ = 0) this is not of particular interest to us
here because such limiting models have already been shown in the literature to arise as limits of
standard GARCH-Normal models. In this section we consider two cases for limiting processes
that differ according to the specifications for the means and variances as functions of time for
the Xi and X̄i variables and the updating process for the scaling factor. The first limiting
model has price that follows a jump-diffusion process, while volatility follows a jump process.
The second limiting process has jump-diffusive terms in both prices and volatilities and is based
on a different updating scheme. We will provide the specific GARCH-Jump models and their
corresponding limiting forms under both measures P and Q.

2.1 Case 1: Jump-Diffusion Prices with Jumps in Volatility

In [P1], let

µ(∆t) = µ/
√

∆t γ2(∆t) = γ2/∆t (21)

µ̄(∆t) = µ̄/
√

∆t γ̄2(∆t) = γ̄2/∆t. (22)
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Further assume that the volatility updating scheme, H(·), is of the form:

h(i+1)∆t − hi∆t = β0∆t + hi∆t(β1 − 1)∆t + β2hi∆t


 J̄i(∆t)− EP(J̄i(∆t))√

V arP(J̄i(∆t))
− c




2

∆t.(23)

Proposition 1 below shows the limiting system of the approximating GARCH-Jump model
under this specification and with respect to the physical measure P . Towards this goal, let Wt

be a Wiener process, πt a Poisson process with intensity λ, and let Zi’s represent a sequence
of independent standard normal random variables that are independent of Wt and πt. We then
have:

Proposition 1

Fix the initial state of the system at S0 and h0. The GARCH-Jump process, corresponding to
system [P1] under the volatility updating equation (23) and parameterization given by equations
(21) and (22), weakly converges to (as ∆t → 0 for 0 ≤ t ≤ T ):

dlnSt = ft−dt +
√

ht−dWt + (γ̄Zπt
+ µ̄)

√
ht−dπt (24)

dht = (β0 + ψ1ht−)dt + ψ2ht−(γ̄Zπt
+ µ̄)2dπt (25)

where

ψ1 = β1 + ψ2(1 + c2(1 + λγ̂2))− 1

ψ2 = β2/(1 + λγ̂2)

ft = r − ht

2
−

√
htbρ + λκ(1− exp(

√
ht(µ̄ + bργγ̄) +

1
2
htγ̄

2)).

Proof : See Appendix.

First note that setting ∆t = 1 for this GARCH-Jump process gives rise to the benchmark
discrete-time GARCH-Jump model studied by DRS (2004). The limiting model has discontin-
uous stock price and volatility paths. Notice that when ψ2 = 0, the scaling factor, ht is deter-
ministic, and with a further restriction of ψ1 = 0, a simple constant-volatility jump-diffusion
model obtains. Thus, the jump-diffusion model of Merton (1976) is nested in this family. In
our model both intensity risk and jump magnitude risk are priced and the notion that jumps
can only occur in returns, but not in volatilities, is removed. When ψ2 is released from 0 then
the volatility process is no longer continuous. In this case, the drift of volatility is influenced by
the continuous innovations in the asset prices. Further, when jumps occur in returns, they are
accompanied by jumps in volatility.

We now consider the process under the risk neutral measure, Q. Let W̃t and B̃t be two
independent Wiener processes, π̃t a Poisson process with intensity λ̃, and let Z̃i’s represent a
sequence of independent standard random variables that are independent of W̃t, B̃t and π̃t. We
have:
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Proposition 2

Fix the initial state of the system at S0 and h0. The risk neutral GARCH-Jump process, corre-
sponding to system [Q1] under the volatility updating equation (23) and parameterization given
by equations (21) and (22), weakly converges to (as ∆t → 0 for 0 ≤ t ≤ T ):

dlnSt = f̃t−dt +
√

ht−dW̃t +
(
γ̄Z̃πt + µ̄ + bργγ̄

) √
ht−dπ̃t (26)

dht = (β0 + ψ1ht−)dt + ψ2ht−(γ̄Z̃πt + µ̄ + bργγ̄)2dπ̃t (27)

where
f̃t = r − ht

2
+ λκ(1− exp(

√
ht(µ̄ + bργγ̄) +

1
2
htγ̄

2))

and ψ1 and ψ2 have been defined in Proposition 1.

Proof: See Appendix.

Proposition 2 shows that the overall behavior of the limiting processes under both measures
take on a similar form, with adjustments to the drift, intensity and to the magnitude of the
jumps, that reflect the risk premiums under measure P.

We can explore the convergence behavior of option prices generated by the GARCH-Jump
model as the time increment is refined. The convergence pattern will be investigated later in
Section 3.

2.2 Case 2: Jump-Diffusions in both Prices and Volatilities

The exact nature of the limiting models depends on our specification of the predictable process
for the scaling factor, hi∆t. In Case 1, we used an NGARCH specification. As a result, given that
a jump occurs, its size is directly proportional to hi∆t. Models can readily be obtained where
the effects of jumps are not proportional to the level of the scaling factor. As an example, we
begin by replacing the NGARCH process, given in equation (10) with the following discrete-time
threshold GARCH (TGARCH) model:

φt = β0 + β1φt−1 + β2

∣∣∣∣∣
J̄t−1 − λµ̄√

1 + λγ̂2

∣∣∣∣∣ + β3 max

(
− J̄t−1 − λµ̄√

1 + λγ̂2
, 0

)
(28)

ht = φ2
t . (29)

Different limiting processes are expected. For example, we could specify an approximating
process for φt, over time increment ∆t, of the form:

φ(i+1)∆t − φi∆t = (β0 + β2q2 + β3q3)∆t + φi∆t (β1 − 1)∆t

+β2




∣∣∣∣∣∣
J̄i(∆t)− EP(J̄i(∆t))√

V arP(J̄i(∆t))

∣∣∣∣∣∣
− q2


√∆t
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+β3


max


− J̄i(∆t)−EP(J̃i(∆t))√

V arP(J̃i(∆t))
, 0


− q3


√∆t (30)

where q2 = EP

∣∣∣∣
X̄

(0)
i√

V arP (J̄i(∆t))

∣∣∣∣ and q3 = EP

[
max

(
− X̄

(0)
i√

V arP (J̄i(∆t))

)
, 0

]
.

To obtain a specific model, we need to specify the structure of the parameters of the normal
innovations as functions of the time increments. If we assume the parameterization as in Case
1, the price process naturally becomes a jump-diffusion process similar to that in Proposition 1.
In particular for this structure we have:

Proposition 3

Fix the initial state of the system at S0 and h0. The GARCH-Jump process, corresponding to
system [P1] under the volatility updating equation (30) and parameterization given by equations
(21) and (22), weakly converges to (as ∆t → 0 for 0 ≤ t ≤ T ):

dlnSt = ft−dt +
√

ht−dWt +
(
γ̄Zπt

+ µ̄
) √

ht−dπt (31)

dφt = (β0 + β2q2 + β3(q3 +
λµ̄

2
√

1 + λγ̂2
) + (β1 − 1)φt−)dt

− β3

2
√

1 + λγ̂2
dWt + (β2 +

β3

2

√
1 + λγ̂2)

√
π − 2

π
dBt

+
1√

1 + λγ̂2
[β2|γ̄Zπt

+ µ̄|+ β3 max(−γ̄Zπt
− µ̄, 0)]dπt (32)

ht = φ2
t (33)

where
ft = r − ht

2
−

√
htbρ + λκ(1− exp(

√
ht(µ̄ + bργγ̄) +

1
2
htγ̄

2)).

Proof : See Appendix.

As a special case, the limiting volatility process, obtained by applying Ito’s lemma and letting

β0 + β2q2 + β3

(
q3 + λµ̄

2
√

1+λγ̂2)

)
= 0, is given by:

dht =

[
β2

3

4(1 + λγ̂2)
+

(
β2 +

β3

2

)2 π − 2
π(1 + λγ̂2)

+ 2 (β1 − 1)ht−

]
dt

− β3√
1 + λγ̂2

√
ht−dWt + (2β2 + β3)

√
π − 2

π(1 + λγ̂2)

√
ht−dBt

+
1

1 + λγ̂2
[β2 |γ̄Zπt + µ̄|+ β3max(−γ̄Zπt − µ̄, 0)]2 dπt. (34)

In contrast to the limiting model in Proposition 1, this limiting form allows for jump-diffusion
in both price and volatility. This model is a mean-reverting square root process with jumps for
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ht. By turning off jumps, the limiting model nests the square root stochastic volatility model
given in Scott (1987) and Heston (1993). Without switching off jumps, the volatility dynamic
in equation (34) is more general than that in Bakshi, Cao and Chen (1997), Bates (2000) or Pan
(2002), for it allows for volatility jumps as well.5

Finally, we consider the dynamics under the risk neutral measure. Let W̃t and B̃t be two
independent Wiener processes under measure Q. Under the same measure, let π̃t denote a
Poisson process with intensity λκ that is independent of W̃t and B̃t, and let Z̃i’s represent a
sequence of independent standard normal random variables that are independent of W̃t, B̃t and
π̃t.

Proposition 4

Fix the initial state of the system at S0 and h0. The risk neutral GARCH-Jump process, corre-
sponding to system [Q1] under the volatility updating equation (30) and parameterization given
by equations (21) and (22), weakly converges to (as ∆t → 0 for 0 ≤ t ≤ T ):

dlnSt = f̃t−dt +
√

ht−dW̃t +
(
γ̄Z̃πt + µ̄ + bργγ̄

) √
ht−dπ̃t (35)

dφt = (β0 + β2q2 + β3(q3 +
λµ̄− bρ

2
√

1 + λγ̂2)
) + (β1 − 1)φt−)dt

− β3

2
√

1 + λγ̂2
dW̃t + (β2 +

β3

2
)

√
π − 2

π(1 + λγ̂2)
dB̃t

+
1√

1 + λγ̂2
[β2|γ̄Z̃πt

+ µ̄ + bργγ̄|+ β3 max(−γ̄Z̃πt
− µ̄− bργγ̄, 0)]dπ̃t (36)

ht = φ2
t (37)

where f̃t = r − ht
2 + λκ[1− exp(

√
ht(µ̄ + bργγ̄) + 1

2htγ̄
2)].

Proof: See Appendix.

3 Convergence Speeds of Option Prices Using Simulation

In this section we examine convergence issues of GARCH-Jump option prices to their continuous
time limits. We assume that the true risk neutral processes are given by Proposition 2 for
our Case 1, and by Proposition 4, for Case 2. European claims can be priced directly off
the continuous time processes using Monte Carlo methods augmented with variance reduction
techniques. The underlying dynamics are typically approximated by the Euler scheme. Our
objective is to compare convergence pattern of the Euler scheme with that of the scheme built
around the approximating GARCH-Jump process. Because we are comparing the option prices

5In our model, the same jump affects both price and volatility. If one wants to switch off just one of them,

two separate jump sources need to be built into the approximating model.
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which are essentially expected values, we in effect deal with the weak order of convergence
for these approximation schemes. Interestingly, the Euler scheme is known to have a weak
convergence order of 1 for diffusion models even though it only has a strong convergence order
of 1/2 (see Kloeden and Platen (1992)). For jump-diffusion models, the Euler scheme continues
to have a weak convergence order of 1, a result established in Theorem 5.2 of Maghsoodi (1998).

For both Cases 1 and 2, we take the limiting jump-diffusion processes and very carefully
simulate a set of “true ” option prices. The set consists of various strikes surrounding the 30
day at-the-money contract. The simulations are conducted using 50, 000 sample paths and an
Euler scheme with a partition of 210 = 1024 time steps per day, or equivalently a time partition
of about 84 seconds. In addition we use antithetic variance reduction techniques. The resulting
set of true option prices are stored.

We next pick a series of time partitions and use the Euler scheme to establish benchmark
rate of convergence to the true prices. Finally, we compute the same set of option prices using
our GARCH-Jump approximating scheme using the same time partitions. Since large sample
sizes were used in the simulations, the standard errors of the estimates were generally smaller
than one cent, and so the confidence intervals are not reported. The percentage errors in the
pricing are documented for the two approximating schemes and for each time partition. As
the time increments are refined, the two sets of approximating option prices should converge to
their true common values. In this section we are interested in documenting the relative speed
of convergence.

To establish a set of parameters, we used the time series of the S&P 500 index values
to estimate the relevant parameters of equation (23) or (30), depending on the case. Both
estimations were conducted by setting ∆t = 1 day. Since not all the parameters can be fully
identified from the time series alone, we estimated the models under the restriction that κ = 1
and γ = 1. The maximum likelihood estimation method is detailed in DRS (2004).6 In a
nutshell, the likelihood function of our GARCH-Jump model can be explicitly expressed in a
simple analytical form just like the standard GARCH model. Maximum likelihood estimation
can then be carried out using a standard gradient-based optimization method.

For Case 1 where the volatility updating scheme is an NGARCH model, our remaining
benchmark parameter estimates (standard errors) are:

β0 β1 β2 c bρ λ γ̄ µ̄

1.65e-7 0.844 0.0756 0.7714 -0.0723 2.20 2.096 0.0332
(0.00663) (0.0062) (0.0041) (0.0008) (0.0161) (0.0004) (0.0014) (0.0161)

For Case 2, the maximum likelihood estimates (standard errors) are:
6DRS (2004) use panel of option prices in addition to time series data to estimate the parameters and to

evaluate the effectiveness of specific discrete time models, both from the point of view of explaining the volatility

smile and the ability to hedge over finite periods.
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β0 β1 β2 β3 bρ λ γ̄ µ̄

2.3538e-5 0.95653 4.1551e-6 0.000345 -0.0278 1.1478 1.2837 0.04760
(0.041) (0.0001) (0.0001) (0.00001) (0.002) (0.001) (0.0021) (0.0002)

In addition, for our experiments we assume r = 5% per year, S0 = 500, and the initial volatility was
30% annualized. The time partitions start at one per day, two per day, four per day, and keep doubling
until we reach 1024 partitions per day.

Table 1 shows the percentage errors for both approximating methods over a full range of strike prices
for the 30- day contracts. As can be seen, the approximating GARCH-Jump process produces consistently
more accurate results except for the time partitions that are close to 1024. Note that we have set the
Euler approximation prices with a time partition of 1024 as the “true” price. Needless to say, the results
are “engineered” to be in favor of the Euler scheme when the time partition is close to 1024.

Table 1 Here

Note that the GARCH approximating scheme produces errors of magnitude less than one percent for
256 partitions. Generally, this error is less than two cents and is of the order of simulation error.

In order to gain a better understanding of the convergence behavior, we conduct an analysis on the
absolute difference between the approximating option price and the true price by relating it to the number
of time steps. In particular, the absolute difference can be approximated by:

|C(n)− C0| ≈ an−δ.

Let n = 2k and restating the above expression in terms of k we obtain:

|C(2k)− C0| ≈ a2−kδ.

Therefore,
ln(|C(2k)− C0|) ≈ ln(a)− kδ ln 2.

A plot of the logarithmic absolute price difference in relation to k thus reveals the convergence behavior.
A smaller intercept implies a smaller convergence constant, i.e., a better numerical scheme when k is
small, whereas a steeper slope suggests a faster convergence rate, i.e., a better numerical scheme when k

is large.

Figure 1 shows how the option prices under Case 1 converge under the Euler and the GARCH-
Jump approximation schemes. The plots on the left-hand side reveal graphically the results in Table
1. The plots on the right-hand side, however, indicate that the GARCH approximating process has a
smaller convergence constant and is competitive with the Euler scheme in terms of the convergence rate.
These convergence plots are merely suggestive, however. As noted earlier, the Monte Carlo errors of the
computed option prices are typically less than one cent. The same magnitude of Monte Carlo error will
have a much larger impact on the logarithmic absolute pricing error for the points corresponding to larger
k’s vis-a-vis the points corresponding to smaller k’s.

Figure 1 Here
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We now turn to Case 2 and repeat the above analysis. Figure 2 and Table 2 summarize the overall
convergence results and the general nature is fairly similar to Case 1 except that the improvement over
the Euler scheme in terms of the convergence constant is not as dramatic.

Table 2 and Figure 2 Here

Within the class of option models nested by Case 2 are many important models for which analytical
solutions for European options exist. However, there also are an enormous number of potentially useful
models outside the family of models for which analytical solutions exist. For such models, our results
provide an alternative to Euler approximations as a mechanism for more efficiently computing option
prices.

We experimented with other sets of parameters and the results seem fairly stable. In particular,
with ∆t = 1 or 0.5 days, option pricing errors under approximating GARCH processes appears to be
consistently smaller than errors generated by Euler approximations.

Even if one prefers to begin with modeling prices and volatilities by a bivariate process in continuous
time, as above, there are significant advantages in using the GARCH-Jump model as an approximat-
ing device. In fact, the above numerical results indicate that the approximating GARCH-Jump model
provides a more efficient way of computing option prices than the use of the Euler approximation scheme.

4 Other Limiting Models

Clearly, the same methodology can be applied to different volatility updating functions, H(·), to obtain
different limiting jump diffusion models. It also is possible to allow the functional dependence on time in
the means and variances of the X and X̄ variables to be of different forms. For example we could retain
an NGARCH structure, as in Case 1, but allow the means and variances of the X and X̄ to be of the
form:

µ(∆t) = µ/∆t1/4 γ2(∆t) = γ2/
√

∆t (38)

µ̄(∆t) = µ̄/∆t1/4 γ̄2(∆t) = γ̄2/
√

∆t. (39)

In contrast to Case 1, where the limiting price follows a jump diffusion and volatility follows a jump
process, this parameterization leads to a limiting process where the price follows a diffusion, and volatility
follows a jump-diffusion.

To see this we modify the updating equation (23) to the form:

h(i+1)∆t − hi∆t = β0∆t + hi∆t(β1 + β2(1 + c2)− 1)∆t

+ β2hi∆t





 J̄i(∆t)− EP(J̄i(∆t))√

V arP(J̄i(∆t))
− c




2

− (1 + c2)



√

∆t. (40)

Notice that for ∆t = 1, this scheme is identical to the NGARCH scheme in Case 1. For this specification,
we have:
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Proposition 5

Fix the initial state of the system at S0 and h0. The GARCH-Jump process, corresponding to system
[P1] with volatility updating scheme provided by equation (40) and parameterization as given by equations
(38) and (39), weakly converges to (as ∆t → 0 for 0 ≤ t ≤ T ):

dlnSt = ft−dt +
√

ht−dWt (41)

dht =
{
β0 + ht−

[
β1 + β2

(
1 + c2 − λγ̂2

)− 1
]}

dt− 2cβ2ht−dWt +
√

2β2ht−dBt

+β2ht− (γ̄Zπt
+ µ̄)2 dπt (42)

where ft = r − ht

2 −
√

htbρ and γ̂2 = µ̄2 + γ̄2.

Proof: See Appendix.

This limiting model has continuous asset price paths but discontinuous volatility paths. Unlike our
previous case where the local scaling factor, ht, was not the local variance, in this model the local scaling
factor, ht does become the local variance. In this model β2 plays an important role in determining jump
and diffusion effects in volatility and the correlation between volatility and return.

For completeness, we consider the corresponding process under the risk neutral measure, Q. Although
the limiting return dynamic under measure Q follows in a way similar to its corresponding part under
measure P, the limiting volatility process requires additional work because more of the parameters are
functions of ∆t.

As before, let W̃t and B̃t be two independent Wiener processes, π̃t a Poisson process with intensity
λ̃, and let Z̃i’s represent a sequence of independent standard random variables that are independent of
W̃t, B̃t and π̃t.

Proposition 6

Fix the initial state of the system at S0 and h0. The risk neutral GARCH-Jump process, corresponding
to system [Q1] with volatility updating scheme provided by equation (40) and parameterization as given
by equations (38) and (39), weakly converges to (as ∆t → 0 for 0 ≤ t ≤ T ):

dlnSt = f̃t−dt +
√

ht−dW̃t (43)

dht =
{
β0 + ht−

[
β1 + β2

(
1 + c2 − λγ̂2 − 2cbρ

)− 1
]}

dt

−2cβ2ht−dW̃t +
√

2β2ht−dB̃t + β2ht−

(
γ̄Z̃πt + µ̄

)2

dπ̃t (44)

where γ̂2 = µ̄2 + γ̄2 and f̃t = r − ht

2 .

Proof: See Appendix.

This example shows that the limiting form of the NGARCH-Jump model is not unique. Comparing
Case 1 with this example demonstrates that by altering the GARCH coefficients (as functions of ∆t),
one can obtain different limiting models. In fact, a deterministic volatility jump-diffusion model can also
be obtained in a way similar to Corradi (2000). It is informative to know such a possibility exists, but
degenerate limits are not as constructive as the non-degenerate limits presented in our paper.

The convergence rate for this example is not expected to be high because the terms (∆t)0.25 ap-
pear in the approximating GARCH-Jump model. Indeed, computational experiments confirm its slow
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convergence.

If the objective is to develop efficient algorithms for pricing options under the risk neutral measure
then it should be recognized that there is no real need to link the dynamics of the physical process with
the risk neutral process. This being the case, there is no need to curtail f(·) as we have done. Indeed, if
the goal is just to price options with a flexible model, then one can begin directly with the dynamics under
the Q-measure. One advantage of this approach is that the function f(·) is therefore less constrained.
For example, we could specify the drift term as being the drift term in the continuous limit process.
The above propositions which link GARCH models to continuous time limiting models, therefore would
continue to hold, but for a larger class of f(·) functions.

5 Conclusion

In this paper we have extended Nelson (1990) and Duan (1997) by considering limiting models for the
GARCH-Jump process. These limiting models can have diffusive prices and volatilities as well as random
correlated jumps in either or both processes.

In addition to establishing the dynamics under the physical probability measure, we also identified the
risk-neutral dynamics. The resulting limiting models are interesting in their own right, converge rapidly
to their continuous-time counterparts in comparison to the Euler approximation scheme, and allow us to
relate discrete time GARCH-Jump models to the large literature on stochastic volatility and jumps.

The approximating GARCH-Jump model for options contains as special limiting cases, jump-diffusion
models, like Merton (1976), and diffusive stochastic volatility models, like Heston (1993) or Hull and
White (1987). In addition, limiting cases of the model that allow for jumps in both prices and volatilities
can be constructed that allow for option pricing along the lines of Duffie, Pan and Singleton (2001).

Of course, a disadvantage of the GARCH-Jump models is that they rely, for the most part, on Monte
Carlo methods for pricing. In contrast, as long as one remains in the class of affine models, pseudo
analytical solutions for European options exist. To date, however, many problems with affine models
have been identified, and it is possible that we may have to search outside this family. Further, even
if one remains in the affine class, simulation techniques may have to be invoked for pricing American
options. So even within the class of affine models, the GARCH approximating processes may prove useful
for establishing efficient numerical schemes for pricing claims.

Finally, our results related to a local volatility updating equation of the form based either on an
NGARCH or TGARCH updating scheme. Härdle and Hafner (2000) have investigated the TGARCH
volatility updating mechanism and using simulations, they conclude that this scheme might be preferable.
Since our theory is not limited to these two particular updating schemes, other specifications could be
considered. It remains for future empirical research to evaluate alternative jump-diffusion models for
prices and volatilities using the approximating GARCH models outlined here.
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Appendix

Proof of Proposition 1

The GARCH-Jump model under measure P is

lnSi∆t − lnS(i−1)∆t = fi∆t(∆t) +
√

hi∆tJ̄i(∆t)
√

∆t

h(i+1)∆t − hi∆t = β0∆t + hi∆t (β1 − 1)∆t + β2hi∆t

(
J̄i(∆t)− λµ̄

√
∆t√

1 + λγ̂2
− c

)2

∆t

where fi∆t(∆t), given by equation (14), becomes

fi∆t(∆t) =
{

r − hi∆t

2
−

√
hi∆tbρ + λκ

[
1− exp

(√
hi∆t(µ̄ + bργγ̄) +

1
2
hi∆tγ̄

2

)]}
∆t.

In the above, J̄i(∆t) = X̄
(0)
i +

∑Ni(∆t)
j=1 X̄

(j)
i (∆t), X̄

(0)
i ∼ N(0, 1), X̄

(j)
i (∆t) ∼ N( µ̄√

∆t
, γ̄2

∆t ), Ni(∆t) is a

Poisson random variable with parameter λ∆t, and X̄
(j)
i (j = 0, 1, · · ·) are independent.

It should be understood that we are dealing with the space of functions on [0, T ] that are right-
continuous and have left-hand limits, and this space is endowed with the Skorohod topology.

First, we have the following result for the conditional mean return:

f[nt/T ]∆t(∆t)
∆t

−→ r − ht−

2
−

√
ht−bρ + λκ

[
1− exp

(√
ht−(µ̄ + bργγ̄) +

1
2
ht− γ̄2

)]
.

Next, define

H(1)
n (t) ≡

[nt/T ]∑

i=1

J̄i(∆t)
√

∆t

=
[nt/T ]∑

i=1

X̄
(0)
i

√
∆t +

[nt/T ]∑

i=1

Ni(∆t)∑

j=1

X̄
(j)
i (∆t)

√
∆t

and

H(2)
n (t) ≡

[nt/T ]∑

i=1

(
J̄i(∆t)− λµ̄

√
∆t√

1 + λγ̂2
− c

)2

∆t

=
[nt/T ]∑

i=1

(
X̄

(0)
i√

1 + λγ̂2
− c

)2

∆t + 2
[nt/T ]∑

i=1

(
X̄

(0)
i√

1 + λγ̂2
− c

)(∑Ni(∆t)
j=1 X̄

(j)
i (∆t)∆t− λµ̄ (∆t)3/2

√
1 + λγ̂2

)

+
[nt/T ]∑

i=1

(∑Ni(∆t)
j=1 X̄

(j)
i (∆t)

√
∆t− λµ̄∆t√

1 + λγ̂2

)2

.

Note first that
∑[nt/T ]

i=1 X̄
(0)
i

√
∆t in H

(1)
n (t) converges weakly to the standard Brownian motion Wt by

Donsker’s Theorem. By the law of large numbers, the first term in H
(2)
n (t) converges in probability to

tE

(
X̄

(0)
i√

1+λγ̂2
− c

)2

=
1+c2(1+λγ̂2)

1+λγ̂2 t for any t. It is also clear that the second term in H
(2)
n (t) converges in

probability to zero because X̄
(j)
i (∆t)∆t converges in probability to zero.
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The third term in H
(2)
n (t) can be computed as follows:

[nt/T ]∑

i=1

(∑Ni(∆t)
j=1 X̄

(j)
i (∆t)

√
∆t− λµ̄∆t√

1 + λγ̂2

)2

=
1

1 + λγ̂2





[nt/T ]∑

i=1




Ni(∆t)∑

j=1

X̄
(j)
i (∆t)

√
∆t




2

− 2λµ̄

[nt/T ]∑

i=1

Ni(∆t)∑

j=1

X̄
(j)
i (∆t) (∆t)3/2 + λ2µ̄2

[nt/T ]∑

i=1

(∆t)2





.

The last two terms in the above expression clearly converge in probability to zero.

In order to deal with the remaining terms involving the Poisson random sum, we note that X̄
(j)
i (∆t)

√
∆t

for different i or j are independent normal random variables with mean µ̄ and variance γ̄2. Thus,

Ni(∆t)∑

j=1

X̄
(j)
i (∆t)

√
∆t = X̄

(1)
i (∆t)

√
∆t1{Ni(∆t)=1} + oP (∆t)

and 


Ni(∆t)∑

j=1

X̄
(j)
i (∆t)

√
∆t




2

=
(
X̄

(1)
i (∆t)

√
∆t

)2

1{Ni(∆t)=1} + oP (∆t)

where oP (∆t) denotes any term after dividing by ∆t converges to zero in probability. Note that λ [nt/T ]∆t

converges to λt. As a result, we have the following weak convergence:



∑[nt/T ]
i=1

∑Ni(∆t)
j=1 X̄

(j)
i (∆t)

√
∆t

∑[nt/T ]
i=1

(∑Ni(∆t)
j=1 X̄

(j)
i (∆t)

√
∆t

)2


 =⇒

[ ∫ t

0

(
γ̄Zπs

+ µ̄
)
dπs∫ t

0

(
γ̄Zπs

+ µ̄
)2

dπs

]
.

Due to independence between the term that converges to the Brownian motion and those converge
to the compound Poisson processes, we have

[
H

(1)
n (t)

H
(2)
n (t)

]
=⇒

[
Wt +

∫ t

0

(
γ̄Zπs

+ µ̄
)
dπs

1+c2(1+λγ̂2)
1+λγ̂2 t + 1

1+λγ̂2

∫ t

0

(
γ̄Zπs

+ µ̄
)2

dπs

]
.

The bivariate approximating system can be expressed as a system of stochastic differential equations with
respect to

(
H

(1)
n (t),H(2)

n (t)
)
. Applying Theorem 5.4 of Kurtz and Protter (1991) yields weak convergence

to (St, ht). Thus, the limiting model under measure P is obtained.

Proof of Proposition 2

By substituting for µ̄(∆t) and γ̄(∆t) in [Q1], under the Q measure, we obtain:

lnSi∆t − lnS(i−1)∆t = f̃i∆t(∆t) +
√

hi∆tJ̃i(∆t)
√

∆t

f̃i∆t(∆t) =
{

r − hi∆t

2
+ λκ

[
1− exp

(√
hi∆t(µ̄ + bργγ̄) +

1
2
hi∆tγ̄

2

)]}
∆t

where J̃i(∆t) = X̃
(0)
i +

∑Ñi(∆t)
j=1 X̃

(j)
i (∆t), X̃

(0)
i ∼ N(0, 1), X̃

(j)
i (∆t) ∼ N( µ̄+bργγ̄√

∆t
, γ̄2

∆t ), Ñi(∆t) is a Poisson

random variable with parameter λκ∆t and X̃
(j)
i (j = 0, 1, · · ·) are independent.
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The approximate volatility dynamic can be deduced:

h(i+1)∆t − hi∆t

= β0∆t + hi∆t (β1 − 1)∆t + β2hi∆t

(
J̄i(∆t)− λµ̄

√
∆t√

1 + λγ̂2
− c

)2

∆t

= β0∆t + hi∆t (β1 − 1)∆t + β2

(
1 + λκγ̃2

1 + λγ̂2

)
hi∆t

(
J̃i(∆t)− λκ(µ̄ + bργγ̄)

√
∆t√

1 + λκγ̃2
− c∗(∆t)

)2

∆t

where

c∗(∆t) = c

√
1 + λγ̂2

1 + λκγ̃2
+

[λµ̄− λκ(µ̄ + bργγ̄)− bρ]
√

∆t√
1 + λκγ̃2

.

Note that the second equality in the volatility dynamic follows from J̄i(∆t) = J̃i(∆t) + bρ
√

∆t.

Similar to the case under measure P, we define

H̃(1)
n (t) ≡

[nt/T ]∑

i=1

J̃i(∆t)
√

∆t

H̃(2)
n (t) ≡

[nt/T ]∑

i=1

(
J̃i(∆t)− λκ(µ̄ + bργγ̄)

√
∆t√

1 + λκγ̃2
− c∗(∆t)

)2

∆t.

Applying the same arguments as in Proposition 1 yields

f̃[nt/T ]∆t(∆t)
∆t

−→ r − ht−

2
+ λκ

[
1− exp

(√
ht−(µ̄ + bργγ̄) +

1
2
ht− γ̄2

)]

and [
H̃

(1)
n (t)

H̃
(2)
n (t)

]
=⇒


 W̃t +

∫ t

0

(
γ̄Z̃πs

+ µ̄ + bργγ̄
)

dπ̃s

1+c2(1+λγ̂2)
1+λκγ̃2 t + 1

1+λκγ̃2

∫ t

0

(
γ̄Z̃πs

+ µ̄ + bργγ̄
)2

dπ̃s


 .

By the same reason, the limiting model under measure Q is obtained.

Proof of Proposition 3

First, we have the following result for the conditional mean return:

f[nt/T ]∆t(∆t)
∆t

−→ r − ht−

2
−

√
ht−bρ + λκ

[
1− exp

(√
ht−(µ̄ + bργγ̄) +

1
2
ht− γ̄2

)]
.

Next, define

H(1)
n (t) ≡

[nt/T ]∑

i=1

J̄i(∆t)
√

∆t

=
[nt/T ]∑

i=1

X̄
(0)
i

√
∆t +

[nt/T ]∑

i=1

Ni(∆t)∑

j=1

X̄
(j)
i (∆t)

√
∆t.
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Moreover,

H(2)
n (t) ≡

[nt/T ]∑

i=1

[∣∣∣∣∣
J̄i(∆t)− λµ̄

√
∆t√

1 + λγ̂2

∣∣∣∣∣− q2

]√
∆t and

H(3)
n (t) ≡

[nt/T ]∑

i=1

[
max

(
− J̄i(∆t)− λµ̄

√
∆t√

1 + λγ̂2
, 0

)
− q3

]√
∆t.

Thus,

H(2)
n (t) =

[nt/T ]∑

i=1

1{Ni(∆t)=0}

[∣∣∣∣∣
X̄

(0)
i − λµ̄

√
∆t√

1 + λγ̂2

∣∣∣∣∣− q2

]√
∆t

+
[nt/T ]∑

i=1

1{Ni(∆t) 6=0}

[∣∣∣∣∣
X̄

(0)
i

√
∆t +

∑Ni(∆t)
j=1 X̄

(j)
i (∆t)

√
∆t− λµ̄∆t√

1 + λγ̂2

∣∣∣∣∣− q2

√
∆t

]

=
[nt/T ]∑

i=1

[∣∣∣∣∣
X̄

(0)
i − λµ̄

√
∆t√

1 + λγ̂2

∣∣∣∣∣− q2

]√
∆t

−
[nt/T ]∑

i=1

1{Ni(∆t) 6=0}

[∣∣∣∣∣
X̄

(0)
i − λµ̄

√
∆t√

1 + λγ̂2

∣∣∣∣∣− q2

]√
∆t

+
[nt/T ]∑

i=1

1{Ni(∆t) 6=0}

[∣∣∣∣∣
X̄

(0)
i

√
∆t +

∑Ni(∆t)
j=1 X̄

(j)
i (∆t)

√
∆t− λµ̄∆t√

1 + λγ̂2

∣∣∣∣∣− q2

√
∆t

]

=
[nt/T ]∑

i=1

[∣∣∣∣∣
X̄

(0)
i − λµ̄

√
∆t√

1 + λγ̂2

∣∣∣∣∣− q2

]√
∆t +

[nt/T ]∑

i=1

∣∣∣∣∣

∑Ni(∆t)
j=1 X̄

(j)
i (∆t)

√
∆t√

1 + λγ̂2

∣∣∣∣∣ + oP (
√

∆t).

The last equality holds true because we collect the terms that are in the order of
√

∆t or higher when a
jump occurs, i.e., 1{Ni(∆t)6=0} and denote it by oP (

√
∆t). Similarly,

H(3)
n (t) =

[nt/T ]∑

i=1

[
max

(
−X̄

(0)
i − λµ̄

√
∆t√

1 + λγ̂2
, 0

)
− q3

]√
∆t

+
[nt/T ]∑

i=1

max

(
−

∑Ni(∆t)
j=1 X̄

(j)
i (∆t)

√
∆t√

1 + λγ̂2
, 0

)
+ oP (

√
∆t).

The first terms of H
(1)
n (t), H(2)

n (t) and H
(3)
n (t) together have the following weak limit




∑[nt/T ]
i=1 X̄

(0)
i

√
∆t

∑[nt/T ]
i=1

[∣∣∣∣
X̄

(0)
i
−λµ̄

√
∆t√

1+λγ̂2

∣∣∣∣− q2

]√
∆t

∑[nt/T ]
i=1

[
max

(
− X̄

(0)
i
−λµ̄

√
∆t√

1+λγ̂2
, 0

)
− q3

]√
∆t




=⇒




Wt√
π−2

π(1+λγ̂2)Bt

λµ̄

2
√

1+λγ̂2)
t− 1

2
√

1+λγ̂2
Wt +

√
π−2

4π(1+λγ̂2)Bt


 .

The weak convergence of the first element is standard. For the second and third elements, we can still
apply the standard weak convergence result as long as we properly deal with the extra term, λµ̄

√
∆t.

First note that
1√
∆t

[
E

∣∣∣∣∣
X̄

(0)
i − λµ̄

√
∆t√

1 + λγ̂2

∣∣∣∣∣− q2

]
→ 0
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and

V ar

[∣∣∣∣∣
X̄

(0)
i − λµ̄

√
∆t√

1 + λγ̂2

∣∣∣∣∣

]
→ π − 2

π(1 + λγ̂2)
.

Thus, one can effectively ignore λµ̄
√

∆t as far as the limit for the second element is concerned. Next we
note that

1√
∆t

[
E max

(
−X̄

(0)
i − λµ̄

√
∆t√

1 + λγ̂2
, 0

)
− q3

]
→ λµ̄

2
√

1 + λγ̂2

and

V ar

[
max

(
−X̄

(0)
i − λµ̄

√
∆t√

1 + λγ̂2
, 0

)]
→ π − 1

2π(1 + λγ̂2)
.

Thus, the third element must contain an extra term λµ̄

2
√

1+λγ̂2
t.

We now turn to the terms involving the Poisson random sum, we note that X̄
(j)
i (∆t)

√
∆t for different

i or j are independent normal random variables with mean µ̄ and variance γ̄2. Thus,

Ni(∆t)∑

j=1

X̄
(j)
i (∆t)

√
∆t = X̄

(1)
i (∆t)

√
∆t1{Ni(∆t)=1} + oP (∆t)

and ∣∣∣∣∣∣

Ni(∆t)∑

j=1

X̄
(j)
i (∆t)

√
∆t

∣∣∣∣∣∣
=

∣∣∣X̄(1)
i (∆t)

√
∆t

∣∣∣ 1{Ni(∆t)=1} + oP (∆t).

As a result, we have the following weak convergence:



∑[nt/T ]
i=1

∑Ni(∆t)
j=1 X̄

(j)
i (∆t)

√
∆t

∑[nt/T ]
i=1

∣∣∣∣∣
∑Ni(∆t)

j=1
X̄

(j)
i

(∆t)
√

∆t√
1+λγ̂2

∣∣∣∣∣
∑[nt/T ]

i=1 max

(
−

∑Ni(∆t)

j=1
X̄

(j)
i

(∆t)
√

∆t√
1+λγ̂2

, 0

)




=⇒




∫ t

0

(
γ̄Zπs

+ µ̄
)
dπs

1√
1+λγ̂2

∫ t

0

∣∣γ̄Zπs
+ µ̄

∣∣ dπs

1√
1+λγ̂2

∫ t

0
max

(−γ̄Zπs
− µ̄, 0

)
dπs


 .

Due to independence between the terms that converge to the Brownian motions and those converge
to the compound Poisson processes, we have




H
(1)
n (t)

H
(2)
n (t)

H
(3)
n (t)


 =⇒




Wt +
∫ t

0

(
γ̄Zπs

+ µ̄
)
dπs√

π−2
π(1+λγ̂2)Bt + 1√

1+λγ̂2

∫ t

0

∣∣γ̄Zπs
+ µ̄

∣∣ dπs

λµ̄

2
√

1+λγ̂2)
t− 1

2
√

1+λγ̂2
Wt +

√
π−2

4π(1+λγ̂2)Bt + 1√
1+λγ̂2

∫ t

0
max

(−γ̄Zπs
− µ̄, 0

)
dπs


 .

The bivariate approximating system can be expressed as a system of stochastic differential equations with
respect to

(
H

(1)
n (t),H(2)

n (t),H(3)
n (t)

)
. Applying Theorem 5.4 of Kurtz and Protter (1991) yields weak

convergence to (St, φt). Thus, the limiting model under measure P is obtained.

Proof of Proposition 4

We observe that the approximating bivariate system under measure Q is the same as that under measure P
except that (i) the volatility dynamic under measure Q contains (bρ−λµ̄)

√
∆t as opposed to −λµ̄

√
∆t, (ii)

24



X̃
(j)
i (∆t) ∼ N

(
µ̄+bργγ̄√

∆t
, γ̄2

∆t

)
under measure Q as opposed to X̄

(j)
i (∆t) ∼ N

(
µ̄√
∆t

, γ̄2

∆t

)
under measure

P, and (iii) Ñi(∆t) has λκ as the parameter as opposed to Ni(∆t) is governed by parameter λ. The
statement of this proposition can thus be established in the same way as that under measure P.

Proof of Proposition 5

The model under measure P is directly obtained from [P1] given the assumed structure for µ̄(∆t) and
γ̄(∆t). We have the following result for the conditional mean:

f[nt/T ]∆t(∆t)
∆t

−→ r − ht−

2
−

√
ht−bρ.

Next, define

H(1)
n (t) ≡

[nt/T ]∑

i=1

J̄i(∆t)
√

∆t

=
[nt/T ]∑

i=1

X̄
(0)
i

√
∆t +

[nt/T ]∑

i=1

Ni(∆t)∑

j=1

X̄
(j)
i (∆t)

√
∆t.

The second term in the above equation converges to zero in probability because X̄
(j)
i (∆t)

√
∆t converges

to zero in probability. Moreover,

H(2)
n (t) ≡

[nt/T ]∑

i=1





 J̄i(∆t)− λµ̄ (∆t)3/4

√
1 + λγ̂2

√
∆t

− c




2

− (
1 + c2

)


√

∆t

=
[nt/T ]∑

i=1





 X̄

(0)
i√

1 + λγ̂2
√

∆t
− c




2

− (
1 + c2

)


√

∆t

+2
[nt/T ]∑

i=1


 X̄

(0)
i√

1 + λγ̂2
√

∆t
− c







∑Ni(∆t)
j=1 X̄

(j)
i (∆t)

√
∆t− λµ̄ (∆t)5/4

√
1 + λγ̂2

√
∆t




+
[nt/T ]∑

i=1




∑Ni(∆t)
j=1 X̄

(j)
i (∆t) (∆t)1/4 − λµ̄∆t√
1 + λγ̂2

√
∆t




2

.

Note that the second term in the above equation also converges to zero in probability because X̄
(j)
i (∆t)

√
∆t

converges to zero in probability.

Then note that

[nt/T ]∑

i=1





 X̄

(0)
i√

1 + λγ̂2
√

∆t
− c




2

− (
1 + c2

)


√

∆t

=
1

1 + λγ̂2
√

∆t

[nt/T ]∑

i=1

[(
X̄

(0)
i − c

√
1 + λγ̂2

√
∆t

)2

− (
1 + c2

) (
1 + λγ̂2

√
∆t

)]√
∆t
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=
1

1 + λγ̂2
√

∆t

[nt/T ]∑

i=1

[(
X̄

(0)
i − c

√
1 + λγ̂2

√
∆t

)2

−
[
1 + c2

(
1 + λγ̂2

√
∆t

)]]√
∆t

− λγ̂2

1 + λγ̂2
√

∆t

[nt/T ]∑

i=1

∆t.

The standard weak convergence argument leads to:



∑[nt/T ]
i=1 X̄

(0)
i

√
∆t

1
1+λγ̂2

√
∆t

∑[nt/T ]
i=1

[(
X̄

(0)
i − c

√
1 + λγ̂2

√
∆t

)2

−
[
1 + c2

(
1 + λγ̂2

√
∆t

)]]√
∆t


 =⇒

[
Wt

−2cWt +
√

2Bt

]
.

In addition, we have

λγ̂2

1 + λγ̂2
√

∆t

[nt/T ]∑

i=1

∆t −→ λγ̂2t.

For the term involving the Poisson random sum in H
(2)
n (t), we follow the same argument as in the

proof for Proposition 1 to obtain:

[nt/T ]∑

i=1




∑Ni(∆t)
j=1 X̄

(j)
i (∆t) (∆t)1/4 − λµ̄∆t√
1 + λγ̂2

√
∆t




2

=⇒
∫ t

0

(
γ̄Zπs

+ µ̄
)2

dπs

because X̄
(1)
i (∆t) (∆t)1/4 is a normal random variable with mean µ̄ and variance γ̄2. Again due to

independence between the Brownian motions and the compound Poisson process, we have
[

H
(1)
n (t)

H
(2)
n (t)

]
=⇒

[
Wt

−λγ̂2t− 2cWt +
√

2Bt +
∫ t

0

(
γ̄Zπs

+ µ̄
)2

dπs

]
.

Applying Theorem 5.4 of Kurtz and Protter (1991) yields the weak convergence to the limiting model
under measure P.

Proof of Proposition 6

Under the assumed structure for µ̄(·) and γ̄(·), we have:

EQ(J̃i(∆t)) = λ̃(∆t)
(
µ̄ (∆t)−1/4 + bργγ̄

)

V arQ(J̃i(∆t)) = 1 + λ̃(∆t)γ̃2(∆t)

where

γ̃2(∆t) =
(
µ̄(∆t)−1/4 + bργγ̄

)2

+
γ̄2

√
∆t

λ̃(∆t) = λκ(∆t)∆t

κ(∆t) = ebµ(∆t)1/4+ 1
2 b2γ2√∆t.

The volatility scaling updating scheme given in equation (40) can be reexpressed as

h(i+1)∆t − hi∆t = β0∆t + hi∆t

(
β1 + β2

(
1 + c2

)− 1
)
∆t +

β∗2(∆t)hi∆t





 J̃i(∆t)− EQ(J̃i(∆t))√

V arQ(J̃i(∆t))
− c∗(∆t)




2

− d∗(∆t)



√

∆t (A.1)
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where

c∗(∆t) =
EP(J̃i(∆t))− EQ(J̃i(∆t))− bρ

√
∆t + c

√
V arP(J̃i(∆t))√

V arQ(J̃i(∆t))

β∗2(∆t) = β2
V arQ(J̃i(∆t))

V arP(J̃i(∆t))

d∗(∆t) = (1 + c2)
V arP(J̃i(∆t))

V arQ(J̃i(∆t))
.

Now, note that

λ̃(∆t)
∆t

= λ exp
(

bµ (∆t)1/4 +
1
2
b2γ2

√
∆t

)
−→ λ

λ̃(∆t)γ̃2(∆t) = λ∆t exp
(

bµ (∆t)1/4 +
1
2
b2γ2

√
∆t

) 


(
µ̄

(∆t)1/4
+ bργγ̄

)2

+
γ̄2

√
∆t


 −→ 0

β∗2(∆t) = β2

(
1 + λ̃(∆t)γ̃2(∆t)

1 + λγ̂2
√

∆t

)
−→ β2

c∗(∆t) =
c

√
1 + λγ̂2

√
∆t + λµ̄ (∆t)3/4 − λ̃(∆t)

(
µ̄

(∆t)1/4 + bργγ̄
)
− bρ

√
∆t

√
1 + λ̃(∆t)γ̃2(∆t)

−→ c.

Moreover,

1 +
(
c∗2(∆t)− d∗(∆t)

) (
1 + λ̃(∆t)γ̃2(∆t)

)
√

∆t

=
1√
∆t

{
1 + c2

(
1 + λγ̂2

√
∆t

)
− 2cbρ

√
∆t + o

(√
∆t

)
− (1 + c2)

(
1 + λγ̂2

√
∆t

)}

=
1√
∆t

{
−2cbρ

√
∆t− λγ̂2

√
∆t + o

(√
∆t

)}

−→ −2cbρ− λγ̂2.

The conditional mean process has the following limit:

f̃[nt/T ]∆t(∆t)
∆t

−→ r − ht−

2
.

Similar to the case under measure P,

H̃(1)
n (t) ≡

[nt/T ]∑

i=1

J̃i(∆t)
√

∆t

=
[nt/T ]∑

i=1

X̃
(0)
i

√
∆t +

[nt/T ]∑

i=1

Ñi(∆t)∑

j=1

X̃
(j)
i (∆t)

√
∆t.

The second term in the above equation converges to zero in probability because X̃
(j)
i (∆t)

√
∆t converges

to zero in probability. Moreover,

H̃(2)
n (t)

27



≡
[nt/T ]∑

i=1





 J̃i(∆t)− λ̃(∆t)

(
µ̄

(∆t)1/4 + bργγ̄
)

√
1 + λ̃(∆t)γ̃2(∆t)

− c∗(∆t)




2

− d∗(∆t)



√

∆t

=
[nt/T ]∑

i=1





 X̃

(0)
i√

1 + λ̃(∆t)γ̃2(∆t)
− c∗(∆t)




2

− d∗(∆t)



√

∆t

+2
[nt/T ]∑

i=1


 X̃

(0)
i√

1 + λ̃(∆t)γ̃2(∆t)
− c∗(∆t)







∑Ñi(∆t)
j=1 X̃

(j)
i (∆t)

√
∆t− λ̃(∆t)

(
µ̄

(∆t)1/4 + bργγ̄
)√

∆t
√

1 + λ̃(∆t)γ̃2(∆t)




+
[nt/T ]∑

i=1




∑Ñi(∆t)
j=1 X̃

(j)
i (∆t) (∆t)1/4 − λ̃(∆t)

(
µ̄

(∆t)1/4 + bργγ̄
)

(∆t)1/4

√
1 + λ̃(∆t)γ̃2(∆t)




2

.

Note that the second term in the above equation also converges to zero in probability because X̃
(j)
i (∆t)

√
∆t

and λ̃(∆t)
√

∆t converges to zero.

The weak convergence argument similar to Proposition 5 leads to:



∑[nt/T ]
i=1 X̃

(0)
i

√
∆t

∑[nt/T ]
i=1

[(
X̃

(0)
i√

1+λ̃(∆t)γ̃2(∆t)
− c∗(∆t)

)2

− d∗(∆t)

]
√

∆t


 =⇒

[
W̃t

− (
2cbρ + λγ̂2

)
t− 2cW̃t +

√
2B̃t

]
.

The extra term − (
2cbρ + λγ̂2

)
t is due to the fact that

1+(c∗2(∆t)−d∗(∆t))(1+λ̃(∆t)γ̃2(∆t))√
∆t

−→ −2cbρ−λγ̂2,

a result established earlier. For the term involving the Poisson random sum in H̃
(2)
n (t), we have

[nt/T ]∑

i=1




∑Ñi(∆t)
j=1 X̃

(j)
i (∆t) (∆t)1/4 − λ̃(∆t)

(
µ̄

(∆t)1/4 + bργγ̄
)

(∆t)1/4

√
1 + λ̃(∆t)γ̃2(∆t)




2

=⇒
∫ t

0

(
γ̄Z̃πs

+ µ̄
)2

dπ̃s

because X̃
(1)
i (∆t) (∆t)1/4 is a normal random variable with mean µ̄ and variance γ̄2. Again due to

independence between the Brownian motions and the compound Poisson process, we have

[
H̃

(1)
n (t)

H̃
(2)
n (t)

]
=⇒


 W̃t

− (
2cbρ + λγ̂2

)
t− 2cW̃t +

√
2B̃t +

∫ t

0

(
γ̄Z̃πs

+ µ̄
)2

dπ̃s


 .

Thus, the limiting model under measure Q is obtained.
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Table 1 
Convergence of Percentage Errors in Option Prices for Case 1 

 
The Table shows the percentage errors in option prices using the Euler and approximating GARCH-Jump schemes. The 
top entries show the convergence behavior of errors when the Euler approximation scheme is used. The bottom entries 
in each row show the errors when the approximating GARCH-Jump option model is used.   The models are shown 
below where the relevant variables are defined in Proposition 2. The percentage error is defined as the GARCH (or 
Euler) price minus the true price divided by the true price, and reported as a percentage. The true price is the Euler 
price based on 1024 partitions per day. The parameter values used are discussed in the text. The option contracts are 
European calls with 30 days to expiration.  In all cases 50000 simulations were used using antithetic control variables 
The specific approximating GARCH-Jump model, corresponding to [Q1] for Case 1 reduces to: 
 

 
 
The Continuous Time Limit Model is given in Proposition 2.  
 
 
 
 
 
 
 
 
 
 
 

Strike 1 2 4 8 16 32 64 128 256 512 1024

61.36 32.89 17.36 9.41 4.47 2.44 1.08 0.23 0.48 0.66 -
3.02 2.63 1.87 1.78 1.05 0.82 0.36 -0.12 0.34 0.58 -0.061

68.03 36.60 19.37 10.52 5.03 2.75 1.25 0.29 0.56 0.76 -
3.47 3.05 2.19 2.08 1.25 0.98 0.50 -0.06 0.44 0.70 -0.032

75.41 40.67 21.56 11.75 5.63 3.08 1.43 0.34 0.65 0.86 -
3.99 3.51 2.55 2.43 1.48 1.17 0.64 0.01 0.56 0.84 0.002

83.55 45.14 23.95 13.07 6.29 3.44 1.61 0.40 0.74 0.98 -
4.56 4.03 2.95 2.82 1.74 1.38 0.79 0.08 0.69 1.00 0.044

92.52 50.01 26.55 14.48 6.97 3.82 1.78 0.44 0.82 1.09 -
5.21 4.59 3.39 3.22 2.02 1.60 0.93 0.15 0.81 1.16 0.096

102.40 55.32 29.35 15.99 7.69 4.21 1.96 0.49 0.90 1.21 -
5.94 5.22 3.87 3.65 2.31 1.84 1.08 0.22 0.95 1.35 0.158

113.29 61.08 32.38 17.60 8.46 4.64 2.13 0.54 0.99 1.33 -
6.77 5.91 4.40 4.10 2.62 2.12 1.24 0.31 1.11 1.54 0.234

125.23 67.34 35.63 19.32 9.24 5.09 2.31 0.59 1.08 1.45 -
7.66 6.66 4.97 4.56 2.93 2.42 1.41 0.40 1.28 1.75 0.323

138.34 74.13 39.14 21.14 10.06 5.56 2.49 0.63 1.15 1.59 -
8.66 7.51 5.58 5.07 3.28 2.74 1.58 0.51 1.45 1.98 0.423

152.70 81.48 42.90 23.08 10.94 6.03 2.63 0.66 1.22 1.72 -
9.79 8.44 6.25 5.63 3.65 3.07 1.75 0.61 1.62 2.22 0.529

168.43 89.43 46.93 25.14 11.86 6.50 2.79 0.68 1.30 1.84 -
11.04 9.45 7.02 6.25 4.02 3.39 1.92 0.73 1.83 2.46 0.648

530

540

550

Number of Partitions per Day

490

500

510

520

450

460

470

480



 Table 2 
Convergence of Percentage Errors in Option Prices 

 
The Table shows the percentage errors in option prices using the Euler and GARCH-Jump approximation schemes. The 
top entries show the convergence behavior of errors when the Euler approximation scheme is used. The bottom entries 
in each row show the errors when the approximating GARCH-Jump  option model is used.   The models are shown 
below where the relevant variables are defined in Proposition 4. The percentage error is defined as the GARCH (or 
Euler) price minus the true price divided by the true price, and reported as a percentage. The true price is the Euler 
price based on 1024 partitions per day. The parameter values used are discussed in the text. The option contracts are 
European calls with 30 days to expiration.  In all cases 50000 simulations were used using antithetic control variables. 
The approximating GARCH-Jump Model defined in [Q1] for this case reduces to: 
 

 
The Continuous Time Limit Model is given in Proposition 4. 
 
 
 
 
 
  

Strike 1 2 4 8 16 32 64 128 256 512 1024

11.05 5.56 2.90 1.47 0.70 0.39 0.09 0.07 0.01 0.02 -
-0.85 -0.90 -0.53 -0.54 -0.36 -0.47 -0.25 -0.09 -0.01 0.01 -0.02

14.19 7.24 3.81 1.96 0.95 0.53 0.12 0.09 0.01 0.04 -
-1.26 -1.30 -0.79 -0.76 -0.52 -0.68 -0.35 -0.14 -0.03 0.01 -0.02

18.11 9.36 4.92 2.57 1.25 0.69 0.13 0.11 0.00 0.05 -
-1.81 -1.81 -1.18 -1.09 -0.75 -0.95 -0.51 -0.22 -0.06 0.02 -0.05

23.02 12.03 6.32 3.35 1.64 0.91 0.15 0.17 0.00 0.06 -
-2.51 -2.45 -1.68 -1.46 -1.00 -1.27 -0.72 -0.30 -0.07 0.05 -0.09

29.15 15.29 8.05 4.30 2.08 1.17 0.19 0.25 0.06 0.07 -
-3.37 -3.25 -2.31 -1.91 -1.32 -1.66 -0.97 -0.39 -0.06 0.10 -0.15

36.71 19.26 10.16 5.46 2.58 1.45 0.22 0.33 0.10 0.10 -
-4.38 -4.23 -3.03 -2.49 -1.73 -2.14 -1.30 -0.52 -0.07 0.15 -0.22

45.97 24.08 12.68 6.79 3.24 1.84 0.30 0.37 0.10 0.14 -
-5.60 -5.39 -3.85 -3.19 -2.19 -2.72 -1.60 -0.68 -0.14 0.14 -0.28

57.32 29.86 15.71 8.31 4.02 2.27 0.34 0.37 0.03 0.18 -
-7.04 -6.78 -4.76 -4.04 -2.80 -3.36 -1.93 -0.90 -0.26 0.07 -0.32

71.29 36.75 19.33 10.15 4.89 2.83 0.43 0.44 0.03 0.32 -
-8.58 -8.36 -5.68 -4.99 -3.49 -4.08 -2.25 -1.15 -0.37 -0.02 -0.32

88.28 44.86 23.51 12.17 5.77 3.36 0.54 0.47 -0.01 0.36 -
-10.34 -10.20 -6.75 -6.14 -4.31 -4.94 -2.64 -1.40 -0.52 -0.21 -0.44

109.09 54.49 28.35 14.41 6.63 3.92 0.72 0.42 0.06 0.32 -
-12.23 -12.14 -7.96 -7.42 -5.25 -5.77 -3.07 -1.76 -0.71 -0.35 -0.62
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Figure 1 
Comparing Convergence Rates of GARCH to Continuous Time Limits for Case 1 

 
The graphs compare the percentage errors in option prices produced by the GARCH-Jump model with the Euler 
approximation scheme. The number of time increments per day are indicated on the x-axis . 50,000 sample paths were 
used to construct the prices, and antithetic control variates were used. The true prices were taken as the prices produced 
by an Euler scheme using 2000 partitions per day.  The left panel shows the convergence behavior for 30 days call 
contracts and the right panel shows the convergence rate.  The underlying price at date 0 is 500, and the option strikes 
are indicated. The parameter values correspond to those of our estimated model. The parameters were estimated from 
time series data on the S&P 500 as outlined in Section 3. 
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Figure 2 
Comparing Convergence Rates of GARCH to Continuous Time Limits for Case 2 

 
The graphs compare the percentage errors in option prices produced by the GARCH-Jump model with the Euler 
approximation scheme. The number of time increments per day are indicated on the x-axis . 50,000 simulations were 
used to construct the prices, and antithetic control variates were used. The true prices were taken as the prices produced 
by an Euler scheme using 2000 partitions per day.  The left panel shows the convergence rate for 30 days call contracts 
and the right panel shows the convergence behavior. The underlying price at date 0 is 500, and the option strikes are 
indicated. The parameter values correspond to those of our estimated model. The parameters were estimated from time 
series data on the S&P 500 as outlined in Section 3. 
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