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Abstract

This article establishes a family of models for pricing interest rate sensitive claims when the

underlying interest rate is driven by a two state variable GARCH process. Analytical solutions

are established for the case when the innovations in the short rate are combinations of a normal

and chi-squared random variables and the volatility of rates takes on a special GARCH form.

GARCH models that nest level dependent interest rate models, including the Cox, Ingersoll,

and Ross model are also considered. Algorithms are provided that permit the e±cient pricing of

American style interest rate claims under a rather broad array of dynamics, including GARCH

and regime switching processes. The simple e±cient algorithms for pricing interest rate claims

that we establish should permit empiricists to use term structure and option data to more fully

evaluate alternative volatility dynamics in interest rate markets.



Signi¯cant research has been conducted on the class of single factor a±ne yield models.

The empirical evidence suggests that these models are too restrictive to ¯t nominal interest

rate behavior.1 As a result, researchers have considered more complex models. Examples

include Longsta® and Schwartz (1992), who permit the short volatility to be stochastic, Ait-

Sahalia (1996), who allows mean reversion and volatility to be related to the level of interest

rates in rather complex ways, Gray (1996), who permits regime switching, and Brenner, Harjes

and Kroner (1996), hereafter BHK, who incorporate GARCH e®ects into the dynamics of the

spot rate. The intent with these models is to add additional realism primarily through the

volatility process. The recent empirical tests by Gray and BHK on the time series of interest

rates highlight the restrictions of many of the common single factor models, and the importance

of incorporating GARCH like features into the dynamics.

BHK show that models which parameterize volatility only as a function of the level of interest

rates over-emphasize the sensitivity of volatility to levels, and are unable to capture the serial

correlation in conditional variances. They also show that simple GARCH models fail to capture

the relationship between volatility and the level of rates. Their models, which incorporate

both GARCH and Level e®ects, characterize the volatility process better than either Level or

GARCH models alone. They conclude that there exists a strong need to establish theoretical

option pricing models for interest sensitive claims that are driven by underlying GARCH-Level

dependent processes.

In this paper we develop such models. Our underlying interest rate is modeled by a two

state variable GARCH process, the ¯rst variable capturing a mean reverting short term rate

and a second state variable capturing volatility. Our models are capable of handling a wide

array of dynamics for the volatility. In particular, its dynamics could depend on recent interest

rate innovations, the level of interest rates and other known information. For the special case

when the volatility process does not depend on the level of rates, the two state variable GARCH

process leads to analytical solutions for bond prices and selected derivative instruments. In

this case, one period rates have distributions that are combinations of normal and chi-squared

distributions. When the chi-squared innovation is shut down, the model reduces to a GARCH

extension of the discrete Vasicek model. In this model, rates are conditionally normal for the

single period, but, due to the GARCH feature, over multiple periods, the rate is not normal, and

its distribution can display signi¯cant kurtosis and skewness that could be useful in explaining

the volatility smile. Actually, since our analytical model also permits chi squared innovations

in the riskless rate we are able to depart even further from normality with distributions that

hopefully capture features that render the model a more realistic description of the process.

Several other models exist which incorporate stochastic volatility for the short rate. For
1For an excellent discussion of these models and a summary of the empirical results see Chapter 11 of Campbell,

Lo and MacKinlay (1997).
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example, Longsta® and Schwartz (1992) have a two factor model and Chen (1996) has a three

factor model of the term structure where the state variables are the short rate, the long run

average of the short rate, and the local volatility. These models, like our analytical models,

belong to the Du±e-Kan (1996) family, meaning that bond yields are a±ne in the state variables.

Unlike stochastic volatility models, however, our GARCH models have some advantages in that

very standard maximum likelihood estimation procedures can be used to estimate the parameters

of the process.

In extending beyond the Du±e-Kan class, we seldom ¯nd analytical solutions for bond prices

and therefore have to resort to numerical procedures for their computations. Estimating the

parameters of the process using time series of bond prices then becomes a computational burden

due to the necessity of repeated calls to the numerical routines.2 In this paper we provide an

e±cient algorithm for computing interest rate claims, and, for models that are not in the Du±e-

Kan family, we demonstrate how parameter estimation is feasible. For example, we can price

American claims under a Cox, Ingersoll and Ross type model, extended to incorporate GARCH

e®ects.

While our focus of attention is on developing model for pricing claims under GARCH, such

models are not the only promising avenue for model development. Recently, several authors

have begun studying the behavior of interest rates when the underlying dynamics follows a

regime switching process. An early example of a regime switching model was established by

Hamilton (1989). More recently, Gray (1996) has studied the time series properties of interest

rates when the underlying regimes are characterized by di®erent mean reversion and volatility

updating schemes. Our results for option pricing under GARCH models can be generalized

to regime switching models where the volatility updates depend not only on the current levels

of rates and volatilities, but also on a second independent stochastic process. This extension

permits option prices to be derived under processes like Hamilton or Gray.

The paper proceeds as follows. In the ¯rst section we specify the dynamics of a state variable

and the pricing kernel in such a way that we obtain a model for interest rates that nests a large

class of existing models and provides generalizations that may better explain derivative prices.

We also identify the risk neutral measure under which all contingent claims can be readily

priced. In section 2, we extend the Vasicek (1977) model to cases where the state variable has
2There are a few exceptions. For example, multifactor models in the Heath Jarrow Morton (1992) family,

that are not in the a±ne class, have been investigated by Inui and Kijima (1998). These models are multivariate

generalizations of the models developed by Ritchken and Sankarasubramanian (1995). Since these models have

¯nite state variables, and analytical representations of the term structure, implementation of these models using

Monte Carlo simulation is possible. While Monte Carlo simulation can be used to price European claims, the

pricing of American claims is computationally expensive. This is true, despite recent remarkable advances in

this area. For example, see the excellent review by Boyle, Broadie and Glasserman (1997), and Broadie and

Glasserman (1998).
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both normal and chi-square innovations and the volatility follows a GARCH like process. For

this process, simple analytical equations exist for bond prices, and derivative contracts can be

easily computed. In section 3 we show how to price American claims for a broad family of

processes that are not necessarily in the Du±e Kan family. We illustrate the convergence rate

of prices, and, for models not in the Du±e-Kan family, we demonstrate how a time series of

short term liquid claims can be used to estimate the parameters of the process. In sections 4

and 5 we discuss the modi¯cations of the algorithm that accommodate regime switching and the

incorporation of chi-squared innovations in the state variable. The ¯nal section illustrates how

the model can be made to ¯t an arbitrary initial term structure, and how some of the models

can naturally be extended to handle multiple factors.

I The Basic Setup

In this section we establish an arbitrage free setting for pricing bonds and interest rate claims in a

discrete time setting, when interest rate volatility follows a GARCH like process. To achieve this

objective we need to model the stochastic discount factor, commonly referred to as the pricing

kernel. Towards this goal, let mt be the marginal utility of consumption of the representative

investor. Following Campbell, Lo and MacKinlay (1997), we assume that the dynamics of this

pricing kernel, mt+1=mt, is given by:

¡ ln
mt+1

mt
= ±t + xt + ¸t²t+1 + Át´t+1 (1)

where ²t+1 and ´t+1 are independent standard normal random variables, and ±t and ¸t and Át

are predictable processes, the latter two representing the market prices of risk related to the two

sources of uncertainty. The single period bond price is given by:

e¡rt = EP [
mt+1

mt
jFt] = e¡xt¡±t+¸

2
t=2+Á2

t=2

where the expectation is taken under the probability generating measure, P . If we choose

±t =
¸2
t
2 +

Á2
t
2 then rt inherits the properties of xt.

Given a speci¯cation for the dynamics of the pricing kernel and the state variable, all the

information that is necessary for pricing contingent claims is provided. While pricing of all

claims can proceed, it is advantageous to construct a measure under which interest rate claims

can be readily priced as if the local expectations hypothesis holds. Speci¯cally, this change of

measure reduces the number of state variables that are necessary for implementing algorithms

for pricing interest rate claims.
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Lemma 1

Assume the dynamics of the pricing kernel evolves as

¡ ln
mt+1

mt
= ±t + xt + ¸t²t+1 + Át´t+1:

Assume date T is the terminal date that we are considering and de¯ne measure Q by

dQ

dP
=
mT

m0
e
PT¡1

i=0
ri :

Under measure Q, if Zt+1 is any integrable Ft+1 measurable random variable, then:

e¡rtEQ[Zt+1jFt] = EP [Zt+1
mt+1

mt
jFt]:

Under measure Q, ²t+1 » N(¡¸t; 1); and ´t+1 » N(¡Át; 1):

Proof:

See Appendix 1

We consider models where the dynamics of the state variable follows the process,

rt+1 = ®+ ¯rt + htr
°1
t ²t+1 + ¾r°2t (²t+1 ¡ c)2 (2)

h2
t+1 = F (h2

t ; rt; ²t+1; ´t+1) (3)

where F () produces positive values. While, the algorithms we develop can handle rather general

speci¯cations for the updating process, F (), we shall focus on models where the update for the

variable, h2
t+1, does not depend on the level of interest rates. The reason for this is that the ¯rst

di®usion coe±cient for the interest rate is ht £ r°1t . Hence, the elasticity parameter, °1, already

captures the impact of interest rate level dependence on volatility.

An important family of models for the interest rate process that we consider is given by:

rt+1 = ®+ ¯rt + htr
°1
t ²t+1 + ¾r°2t (²t+1 ¡ c)2 (4)

h2
t+1 = a0 + a1h

2
t + a2;t(²t+1 ¡ dt)2 + a3;t(´t+1 ¡ et)2; (5)

where a2;t, a3;t, dt and et are predictable processes. Under the risk neutral measure, Q, we then

obtain:

rt+1 = ®+ ¯rt + htr
°1
t (²¤t+1 ¡ ¸t) + ¾r°2t (²¤t+1 ¡ (c+ ¸t))

2 (6)

h2
t+1 = a0 + a1h

2
t + a2;t(²

¤
t+1 ¡ (¸t + dt))

2 + a3;t(´
¤
t+1 ¡ (Át + et))

2 (7)

The dynamics under the data generating process, captured by equations (4) to (5), and the

dynamics under the risk neutral process, given by equations (6) to (7), nest many well known

models that can be categorized into three families.
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The ¯rst family arises when ¾ = 0, and a3;t = 0. Then we have:

rt+1 = ®+ ¯rt + htr
°1²t+1

h2
t+1 = a0 + a1h

2
t + a2;t(²t+1 ¡ dt)2:

Here fh2
t jt = 0; 1; 2; ::g can be viewed as a rescaling process for the conditional variance of the

interest rate, rt+1. All the models considered by Chan Karolyi, Longsta® and Sanders (1992) are

nested here, (a1 = a2;t = 0), as are the simple GARCH(1,1) models of interest rates, reviewed

by Bollerslev, Chou, and Kroner (1992). (°1 = 0 and a2;t = a2h
2
t ). This model also includes

Heston and Nandi (1999), who provide a model where GARCH e®ects are induced by normalized

innovations (°1 = 0, a2;t = a2, and dt = dht). Using time series data, BHK show that the e®ects

of good and bad news on the volatility of interest rates is asymmetric. Speci¯cally, negative

shocks have a larger impact on volatility than the equivalent positive shocks. This suggests that

dt > 0.

The second family of models allow for chi-squared as well as normal innovations in the

interest rate. In these models a3;t = 0 in equation (5). Hence the rescaling factor, h2
t+1, has

GARCH properties in that variances depend solely on the path of interest rate innovations.3

If, in addition, we set a0 = a1 = a2;t = 0 in equation (5) and permit ¾ > 0 then innovations

are chi squared, and we get models along the lines of Duan (1996b). Indeed, with °2 = 1, our

model reduces to Duan. In general, we can also permit innovations to be combinations of normal

and chi-squared random variables. The simplest example is a Vasicek like model, generalized to

permit chi squared innovations as:

rt+1 = ®+ ¯rt + ¾1²t+1 + ¾2²
2
t+1:

which has no GARCH e®ects. It is well known that the Vasicek model does not produce yield

curves that have su±cient curvature. Models that use both normal and chi-squared innovations

may more readily capture the typical curvatures observed in the yield curve.4

A third family of models arise when a3;t > 0. In this case the volatility updates do not

only depend on interest rate innovations, but also on a second stochastic factor. As a result,

these models generalize the typical GARCH models where variances depend solely on the path of

interest rate innovations. In the extreme case, where a2;t = 0 in equation (5), the rescaling factor

does not depend on the interest rate innovation, and the model reduces to a regime switching

process, where the regimes are directed by the stochastic process f´tjt = 1; 2; ::g. For example,

a simple Hamilton (1989) type of regime switching process can be established. For example, in
3Constantinides (1992) has a model in which the logarithm of the pricing kernel has innovations which are the

sum of non central chi squared random variables. Our approach is quite di®erent, since our state variable, not

the pricing kernel, has chi squared innovations.
4For a discussion on the poor performance of Vasicek models see Backus, Foresi, and Telmer (1997).
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a two volatility regime switching model we have:

rt+1 = ®+ ¯rt + htr
°1
t ²t+1

h2
t+1jh2

t = ±21 =

(
±21 if ´2

t+1 < k1

±22 otherwise

h2
t+1jh2

t = ±22 =

(
±22 if ´2

t+1 > k2

±21 otherwise

For the case where °1 = 0, and conditional on the scaling factor, one period rates are normally

distributed. Due to the random mixing of normal distributions, the tails of the distribution of

rates over multiple periods will display fat tails.5

Before investigating algorithms for pricing claims under rather general GARCH volatility

updating schemes, we consider cases that permit analytical solutions.

II A±ne Yield Interest Rate Models

Consider the following special case of equations (4) - (5), under a pricing kernel given by equa-

tion (1), with ¸t = ¸ht. That is, the market price of risk is directly proportional to the rescaling

factor, and under the data generating measure we have:

rt+1 = ®+ ¯rt + ht²t+1 + ¾²2t+1 (8)

h2
t+1 = a0 + a1h

2
t + a2(²t+1 ¡ dht) + a3(´t+1 ¡ eht)2 (9)

Let P (t; t+ n) represent the date t price of a discount bond that pays $1 at date t+ n.

Proposition 1

Assume the dynamics of the interest rate are given by the above equations. Further, assume Át

and ¸t are proportional to ht. Then, bond prices are given by the following recursive equation.

P (t; t+ n) = e¡An¡Bnrt+Cnh
2
t for n ¸ 1: (10)

where A1 = C1 = 0 and B1 = 1, with

An+1 = An + ®Bn ¡ a0Cn +
1

2
log(1¡ 2(a2Cn ¡ ¾Bn)) +

1

2
log(1¡ 2a3Cn)

Bn+1 = (1 + ¯Bn)

Cn+1 = (¸¡ ¾¸2)Bn + a1Cn + (¸+ d)2a2Cn +

(Bn ¡ 2¸¾Bn + 2a2Cn(¸+ d)2

2(1¡ 2(a2Cn ¡ ¾Bn))
+
a3(e+ Á)2Cn
1¡ 2a3Cn

5For further discussions on pure regime switching models see Hamilton (1989).
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Proof:

See Appendix 1

Note that when a1 = a2 = a3 = ¾ = 0, the model reduces to the Vasicek model, discussed

by Backus, Foresi and Telmer (1997). When the chi-squared innovations are switched o®, ie

¾ = 0, as well as a3 = 0, the model reduces to a Vasicek type model, extended to allow for

GARCH e®ects. In this case, while single period conditional yields are normal, yields over

multiple periods will not be normal. For example, the kurtosis of the distribution is largely

determined by the leverage parameter, d. In addition, the model has two state variables, that

are correlated, rather than the single state variable of the Vasicek model. Figure 1 illustrates

how kurtosis and skewness in the distribution of interest rates can easily be controlled by the

leverage parameter, d.

[ Insert Figure 1 Here]

The most general form of the model, with a3 = 0; allows interest rate innovations to be com-

binations of normal and dependent chi-squared random variables. These innovations, together

with the GARCH e®ects make the model quite distinct from the Vasicek model, and has the

potential to remove the well known volatility smile biases that exist when normal or lognormal

processes are used in pricing interest rate claims.

Finally, when a3 > 0, the variance process depends not only on the path of interest rates,

but also on the stochastic process for ´t. A very simple case of this model occurs when the

GARCH e®ects are shut down (a1 = a2 = 0) and ¾ = 0. In this case, the variance process is

fully determined by the orthogonal state variable, and since interest rate over multiple periods

are mixtures of normals, their distributions will display fat tails.

Proposition 1 easily extends to multi-factor versions. As an example, in Appendix 2, we

develop analytical solutions for a speci¯c two stochastic driver model, which contain up to four

state variables.

Heston and Nandi (1999) have independently derived the analytical solution for the special

case of this model when a3 = ¾ = 0. Following along the lines of Foster and Nelson (1994), they

show that a continuous time limit of this model can be represented as:

dr(t) = (®+ ¯r(t))dt+ ¾(t)dw1(t)

d¾2(t) = ·(µ ¡ ¾2(t))dt+ k¾(t)dw1(t)

Since this continuous time model has drifts and volatilities that are a±ne in r(t) and ¾2(t),

it belongs to the Du±e-Kan family, and analytical solutions are available for bond prices in the

di®usion economy. The advantage of the discrete time formulations rests primarily on parameter
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estimation. Generally, estimating the parameters of GARCH processes are trivial relative to the

estimation issues associated with continuous time di®usions.

If the underlying interest rate has dynamics di®erent from that in Proposition 1 then ana-

lytical solutions for bond prices may not be available. For example, consider the interest rate

dynamics given by

rt+1 = ®+ ¯rt + ht²t+1 (11)

h2
t+1 = a0 + a1h

2
t + a2h

2
t (²t+1 ¡ ¸)2: (12)

In this model the scaling factor updates depend on the total innovation in the interest rate,

rather than on the normalized innovation, used in Proposition 1. Following Duan (1997), it can

be show that this type of process has a limiting di®usion representation of the form:

dr(t) = (®¤ + ¯¤rt)dt+ ¾(t)dw1(t)

d¾2(t) = a¤1dt+ b¤1¾
2(t)dw1(t) + b¤2¾

2(t)dw2(t)

where E(dw1(t)dw2(t)) = 0.

Notice that the discrete representation for interest rates by a two state variable model has just

one stochastic driver while the continuous di®usion limit can be represented by two stochastic

drivers. The di®usion limit does not belong to the Du±e Kan class, and no simple analytical

representations for bond prices exist.

The models identi¯ed in Proposition 1 have the advantage that the time series of di®erent

bond prices can be used to estimate the parameters. In addition, since the entire yield curve can

be constructed once the state variables are known, e±cient numerical schemes can be established

to price complex interest rate claims. However, since these models fall in the Du±e Kan family,

they may not be °exible enough to capture important dynamics in the yield curve. As a result,

it may be advantageous to consider algorithms for pricing claims under interest rate dynamics

that di®er from those in Proposition 1.

III Lattice Models for Pricing Interest Rate Claims

The model that we develop is related to the GARCH option pricing model for equity claims

developed by Ritchken and Trevor (1999) (hereafter RT). Unfortunately, adopting their model

to price interest rate claims is not viable for several reasons. First, in order to price interest rate

claims, it may be necessary to have available the entire term structure of yields (ie. a vector) at

each setting of the two state variables. In the RT algorithm, the number of distinct settings of

the state variables is enormous, since only one of the two state variables, namely the logarithm

of the stock price, has its domain restricted to a grid of values. As a result, the number of term
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structures that need to be built up successively, using backward recursion, grows exponentially

with the number of time periods. Our ¯rst modi¯cation of the RT algorithm is to discretize

the volatility levels so that only a ¯nite number of yield curves need to be built up, regardless

of the number of time periods in the lattice. Second, with interest rate dynamics, the e®ect

of mean reversion can be signi¯cant and its a®ects need to be incorporated into the design of

an algorithm. We therefore modify the RT algorithm in how probability values are assigned

to successor state variables. Third, in RT, the second state variable was the volatility. In our

case, the second state variable is a scaling factor, and the volatility of rates could be a complex

function of this variable. This creates problems when establishing the probabilities of moves in

the state variables, from one set to the next. The algorithm that we establish sets up a stationary

Markov chain approximation to the dynamics, in which the successor state variables and their

transition probabilities are clearly identi¯ed in a ¯rst phase or forward scan. This approach

is quite di®erent to that in Ritchken and Trevor. Finally, in the RT algorithm, only GARCH

processes were considered. In our case we permit a second uncorrelated random variable to

a®ect our updating scheme.

We ¯rst consider pricing interest rate claims when the underlying rates follow a ¯nite dis-

cretized GARCH process with conditional normally distributed innovations. Speci¯cally, under

the data generating measure, such a process is de¯ned by:

rt+1 = ®+ ¯rt + htr
°
t ²t+1 (13)

h2
next = a0 + a1h

2
t + a2h

2
t (²t+1 ¡ d)2

h2
t+1 = ±2j if

±2j¡1 + ±2j
2

· h2
next <

±2j + ±2j+1

2
for j = 1; 2; :::;K (14)

where, we de¯ne ±0 = ¡±1 and ±K+1 = 1.

For pricing purposes, under the Q-measure, we have:

rt+1 = ®+ ¯rt + htr
°
t (²t+1 ¡ ¸t) (15)

h2
next = a0 + a1h

2
t + a2h

2
t (²t+1 ¡ (d+ ¸t))

2

h2
t+1 = ±2j if

±2j¡1 + ±2j
2

· h2
next <

±2j + ±2j+1

2
for j = 1; 2; :::;K (16)

When ° = 0, the above model only permits the local volatility to take on K distinct values.

However, with °1 > 0, local volatilities are not curtailed to K values. While such models may

be of some interest in their own right, in our case they are particularly important, since, for this

family, we can develop e±cient algorithms for pricing interest rate claims. Moreover, as we shall

see, these type of models converge to GARCH models as the partitioning scheme is re¯ned.

We begin by approximating the sequence of single period conditionally normal random vari-

ables for the interest rate in equation (15) by a sequence of discrete random variables that can
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take on values on a grid. Let ¢ be a ¯xed constant that determines the gap between adjacent in-

terest rates on a grid, and let r0 be the given initial interest rate. The interest rates in subsequent

periods are restricted to values r0 + j¢m where j = 0;§1;§2§3:::: and ¢m = ¢=
p
m: Here the

subscript m denotes values derived from using a 2m+1 point approximation to the conditionally

normal random variable. The idea is that as m increases, the approximation improves.

Assume the state variables at date t are (rt; ±
2
k): where rt is on the grid of values and

k 2 f1; 2; 3; ::::;Kg. Then, the random variable, rt+1; is a normal random variable with mean
¹Et and variance ±2k, where:

¹Et = ®+ ¯rt ¡ ¸t±kr°t
Of course, there is no reason that ¹Et will be a grid point. Let »1 be an integer, such that

rt + »1¢m is the nearest grid point to ¹Et. To approximate the conditional normal random

variable, we restrict the movements of rt+1 to 2m+ 1 values, of which m values are above and

below rt + »1¢m, with the middle value equal to rt + »1¢m.

The exact grid points that are used for the approximation are tentatively determined by

putting »2 = 1 and using the points

rt + »1¢m § j»2¢m; for j = 0§ 1;§2; :::§m

If the conditional variance of the interest rate at the \node" (rt; ±k) is \small" then discrete

probability values can be found over the grid of 2m+1 interest rates that surround the expected

interest rate, such that the conditional ¯rst two moments of the discrete variable matches the

true values of the conditional normal distribution being approximated. In this case »2 = 1 will

su±ce. However, if ±k is su±ciently large, and the level of rates are high, then the local variance

may be large and it may not be possible to ¯nd valid probability values for the surrounding

2m + 1 interest rates such that the ¯rst two moments match. In this case, we construct an

approximating distribution that uses every second interest rate point on the grid surrounding

the expected value. If these \double-sized" jumps (»2 = 2) still do not permit the means and

variances to be exactly matched while producing valid probabilities, then the approximating

scheme uses points separated by larger ¢m multiples. In general, »2 is the positive integer

closest to zero that allows the mean and variance of next period's interest rate to be matched to

the true moments while at the same time ensuring that all the 2m+1 probability values are valid

numbers in the interval [0; 1]. We refer to »2 as the jump parameter. This idea, of stretching out

the successor nodes on a grid of points was ¯rst used by Ritchken and Trevor (1999) in pricing

equity options under GARCH speci¯cations. In their approach, however, they assumed »1 = 0.

When interest rates are mean reverting it makes more sense to shift the approximation so that

the middle jump is centered close to the expected value.

Let P (»1 + j»2jrt; ±k) represent the probability that the interest rate moves from rt to rt +

(»1 + j)¢m. for j = 0;§1;§2; : : : ;§m. These probabilities are chosen such that:
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P (»1 + j»2jrt; ±k) =
X

ju;jm;jd

Ã
n

ju jm jd

!
pjuu pjmm pjdd (17)

with ju; jm; jd ¸ 0 such that n = ju + jm + jd and j = ju ¡ jd. The expression in brackets

denotes the trinomial coe±cient n
ju!jm!jd!

and the trinomial probability values pu, pm and pd are

values between zero and one that satisfy:

pu +pm +pd = 1

(»1¢m=m+ »2¢m)pu +(»1¢m=m)pm +(»1¢m=m¡ »2¢m)pd = EQ
t [¢rt]

(»1¢m=m+ »2¢m)2pu +(»1¢m=m)2pm +(»1¢m=m¡ »2¢m)2pd = EQ
t [¢r2t ]

where ¢rt is a normal random variable representing the change in interest rates over a period

from [t; t+ 1
m ] given the mean is ¹E=m and the variance is (±2kr

2°
t )=m:6

For each interest rate on the grid, and for each rescaling factor, these probability values,

together with »1 and »2 need to be computed. The interest rate innovation term, ²t+1 is then

approximated by ²at+1, where

²at+1 =
j»2¢m + (»1¢m)¡ (®+ (¯ ¡ 1)rt ¡ ¸t±kr°t )

±k[rt]°
(18)

and j = 0;§1;§2; : : : ;§m. Viewed from time t, ²at+1 is a discrete state random variable, with

mean 0 and variance 1, that converges in distribution to a continuous state standard normal

random variable as m!1.

Given, the interest rate innovation, ²at+1, the statistic h2
next can be computed, and the next

scaling factor can be identi¯ed. In particular, given the state variables are (rt; ±2k), for pricing

purposes, we have:

rt+1 = rt + »1¢m + j»2¢m (19)

h2
next = a0 + a1±

2
k + a2±

2
k(²

a
t+1 ¡ (d+ ¸t))

2

h2
t+1 = ±2j if

±2j¡1 + ±2j
2

· h2
next <

±2j + ±2j+1

2
for j = 1; 2; :::; K: (20)

In summary, then, for each interest rate on the grid, and for each of the K rescaling levels,

we have computed, »1, »2, the 2m + 1 probability values, and the 2m + 1 successor rescaling

levels. This completes the speci¯cation for the approximating process.

6To approximate the normal random variable over a single period by a discrete (2m+1)-nomial random variable,

¯rst partition the time period into m sub-intervals. Over each subinterval apply a trinomial approximation to the

normal random variable over the increment. The three equations above ensure that the trinomial distribution has

the same ¯rst two moments as the normal distribution. Here, pu; pm and pd represent the probability of an \up",

\middle" and \down" jump, where \middle" is de¯ned according to the drift, or more precisely by »1. Given the

sequence of m independent trinomials, the total probability to each terminal \node" is given by equation (17).
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Proposition 2

Let ¢ be a given constant and ¢m = ¢=
p
m. De¯ne r0 to be the initial interest rate, and

restrict its future values to the points r0 + j¢m for j = 0 § 1;§2; ::::. Let f±1; ±2; :::::; ±Kg be

the set of scaling values, with h0 = ±k given, for some k, k = 1; 2:::;K: The Markov chain

f(rt; ht) jt = 0; 1; 2; :::g characterized by equations (19) to (20), converges in distribution to a

discrete GARCH regime process f(rt; ht) jt = 0; 1; 2; :::g given in equations (15)- (16) as m!1.

Proof:

See Appendix 3.

Pricing interest rate claims on the lattice is now rather straightforward. Assume that there are

a total of R di®erent interest rate levels on the lattice and K scaling factor levels (regimes).

Then, we will essentially have R £K distinct term structures. These term structures can be

built up sequentially using backward recursion on the lattice and by pricing bonds under the

local expectations hypothesis in the Q measure. Once all the term structures have been built

up, then interest rate claims can be readily priced. Speci¯cally,

C(rt; ±k) = e¡rtEQ
t [C(rt+1; ht+1jrt; ±k)

= e¡rt
mX

j=¡m
C(rt + »1¢m + j»2¢m; ±kj)P (»1 + j»2jrt; ±k)

In the above equation ±kj represents the scaling factor that follows level k given that the interest

rate is rt, the current scaling factor is ±k, and the current innovation is a jump of size (»1+j»2)¢m.

Notice that the »1 and »2 values will vary depending on the level of the state variables. If the

claim is an American claim, then the value, C(rt; ±k), has to be compared with the intrinsic

value of the claim given that it is exercised.

While the ¯nite GARCH regime model is of some interest in its own right, as discussed

earlier, the model really serves as an important bridge to continuous state GARCH - Level

dependent interest rate processes, and hence to stochastic volatility models. Again, to make the

exposition of this convergence clear we continue to consider our model given in equations (19)

and (20).

Now, assume that the partition of the state space for the second state variable, i.e. for the

rescaling levels, is set up such that as K increases, the mesh of the partition decreases. In

particular,

1. As K !1, ±2K !1 and ±21 ! a0

2. Max1·j·nj±2j ¡ ±2j¡1j ! 0 as K !1.

This leads to:

12



Proposition 3

Under the above two conditions, the discretized GARCH process converges pointwise to the con-

tinuous GARCH process given below.

rt+1 = ®+ ¯rt + htr
°
t (²t+1 ¡ ¸t)

h2
t+1 = a0 + a1h

2
t + a2h

2
t (²t+1 ¡ (d+ ¸t))

2

Proof:

See Appendix 3.

Taken together, Propositions 2 and 3 imply that a Markov Chain f(rt; ht) jt = 0; 1; 2; :::g
can be established such that as m and K ! 1 the discretized GARCH process converges in

distribution to the above continuous state GARCH process.

To illustrate the rate of convergence of the ¯nite GARCH regime option prices to their

continuous state GARCH level dependent limits, we ¯rst consider the GARCH-Vasicek model,

for which analytical solutions for the yield curve are available. In our implementation, we ¯xed

the number of periods at 120 months, and we approximated the number of rescaling factors by

K values where K increases from 1 to 30 equally spaced values. The spacing is determined such

that a0 is the lowest variance state, and the initial volatility, h0, is the middle state. All the

algorithms for the models were run on a Pentium 233 MHz processor and the times (in seconds)

are reported in the tables.

Table 1 shows the convergence of selected yields to their theoretical values for the pure

Vasicek model, where there is only one volatility level. The results obtained using a trinomial

approximation over each month are compared to the analytical solutions. As can be seen the

trinomial approximation is e®ective.

Table 2 shows the convergence of prices to the GARCH like Vasicek model as the number

of rescaling levels increase. The ¯rst row shows that the pure Vasicek model, with one rescaling

factor, provides a poor approximation. However, as the number of rescaling levels increase the

yields begin to stabilize. Prices of an at-the-money one year option on a two year bond are

shown in Figure 2. Like the bond prices, the convergence rate of prices as the number of scaling

factors increase is fairly rapid.7

[ Insert Table 1 and 2 Here ]

[ Insert Figure 2 Here ]

Table 3 repeats the analysis of Table 1 for the pure CIR model. As with the pure Vasicek

model, the algorithm performs well, even for the case m = 1. Table 4 shows the results for the
7The tables and ¯gures shown here represent very typical convergence patterns.

13



GARCH-CIR model. While there are no analytical solutions for yields or options, the numerical

results indicate that yields stabilize quite rapidly, and that there is little bene¯t in partitioning

the rescaling factors with more than 40 states.

[Insert Tables 3 and 4 Here]

Figure 3 shows the typical convergence rate of option prices in the GARCH-CIR model. As

the number of scaling factors increase to 40 the option price converges.

[Insert Figure 3 Here]

As discussed earlier, the cost of moving beyond the a±ne family could be high since parameter

estimation, using the time series of bond and perhaps other liquid derivative prices, requires

repeated calls of the numerical routines. Several di®erent approaches can be used to simplify

the estimation problem. For example, historical interest rates can be used to estimates all the

parameters under the data generating measure. The additional parameters, namely the market

prices of risk, can be extracted from the time series of prices of selected liquid instruments.

Moreover, if we restrict the cross section of claims to the most liquid short term instruments,

then the numerical procedures will be reasonably e±cient.

To illustrate this, we consider the time it takes to compute a single iteration in which 4 short

term discount bonds and 4 short term caplets are priced for a given parameter set. Speci¯cally, a

3, 6, 12, and 24 month discount bond is priced along with 3 month caplets with expiration dates

in 3, 6 and 12 months. The computational times are somewhat insensitive to the parameter

settings, but the speci¯c parameter values were selected to be consistent with the values obtained

in empirical studies by Backus, Foresi and Telmer (1997). The set of prices takes less than 5

seconds to compute on a Pentium 233 MHz processor. The total computational time for a given

parameter set will depend on how many cross sectional prices are used in the analysis. If the time

series consists of n sets of these prices then n sets of theoretical prices have to be obtained. This

will take at most 5£n seconds.8 The total computational e®ort for the optimization problem will

depend on the number of calls required to identify an optimal solution. This typically depends

on the number of free parameter values and upon the initial solution.9

8Actually, if n is large, then, for a given set of parameters, the computational time can be reduced dramatically

from this bound by solving one larger problem over a much wider range of initial state variables. The prices of the

short dated claims are then obtained over a large ¯ne grid of the state variables. For any realization of the state

variables over time, the prices of the short dated instruments can be approximated by appropriate interpolation

of prices. In our example, the gap size between successive interest rate levels was about 10 basis points. If this is

reduced to about 2-4 basis points then 20-30 seconds of computational e®ort is su±cient to generate all pricing

information, regardless of n.
9Our experience with say 3 unknown parameter values, is that the optimizations may require from 10 to 1000

calls, indicating a wide range of computational e®ort.
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Once the parameters are estimated, then of course, less e±ciency is required for the pricing

of any speci¯c American interest rate claim. If the lattice is to be used to price contracts when

the underlying dynamics satisfy the conditions of Proposition 1, then the algorithm simpli¯es

since the term structure is explicitly known for each setting of the state variables. For example,

in pricing a three month option on a thirty year bond, a lattice need only be built out to three

months. Similarly, if a Bermudan swaption is to be priced, then the value of early exercise at any

intermediate setting of the two state variables, can easily be assessed. If no analytical solutions

are available, then the exercise value at each exercise date has to be numerically computed.10

IV Regime Switching Models

The above lattice based model can be extended to include the e®ects of the orthogonal process

generated by the sequence f´tjt = 1; 2; ::; g. Consider the model:

rt+1 = ®+ ¯rt + htr
°
t ²t+1

h2
next = a0 + a1±

2
k + a2±

2
k(²t+1 ¡ d)2 + a3±

2
k(´t+1 ¡ e)2

h2
t+1 = ±2j if

±2j¡1 + ±2j
2

· h2
next <

±2j + ±2j+1

2
for j = 1; 2; :::;K

where, as before, we de¯ne ±0 = ¡±1 and ±K+1 = 1.

For pricing purposes, under the Q-measure, we have:

rt+1 = ®+ ¯rt + htr
°
t (²t+1 ¡ ¸t)

h2
next = a0 + a1±

2
k + a2±

2
k(²t+1 ¡ (d+ ¸t))

2 + a3±
2
k(´t+1 ¡ (e+ Át))

2

h2
t+1 = ±2j if

±2j¡1 + ±2j
2

· h2
next <

±2j + ±2j+1

2
for j = 1; 2; :::; K

Pricing claims in such models can readily be accomplished with a small modi¯cation to the

algorithm. In particular, the model is still a two state variable model. Given the state is (rt; ±k),

to price a claim under the risk neutral measure proceeds on the lattice as before, except that

there is an additional step. Speci¯cally, given an interest rate innovation, the value of h2
next is no

longer certain, and hence the successor scaling factor is not uniquely established. However, its

value will be uniquely determined once the value of ´t+1 is known. Given a discretization of ´t+1,

the conditional value of the scaling factor, h2
nextj´t+1, can be established, and the next scaling

factor identi¯ed. Since, the random variables, ´t+1 and ²t+1 are independent, the probability

distribution of joint moves in the interest rate and orthogonal volatility innovations can be
10For example, given the parameters, the computational time for a 5 year Bermudan swaption with six month

exercise dates should be under 15 seconds.
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established, and the joint expected price of the claim, conditional on the state variables, can be

computed. Speci¯cally, we have

C(rt; ±k) = e¡rtEQ
t [C(rt+1; ht+1jrt; ±k)

= e¡rt
nX

i=¡n

mX

j=¡m
C(rt + »1¢m + j»2¢m; ±sj(i)P (»1 + jjrt; ±k)¼(i)

where sj(i) is the next scaling factor that is completely determined once the interest rate in-

novation, indexed by j, and orthogonal volatility innovation, indexed by i, is determined, and

¼(i) is the probability that the approximating standard normal random variable falls in the ith

interval.11

V Non Gaussian Innovations in the State Variable

The above algorithm can also be modi¯ed to handle chi squared innovations in the state variable.

In developing the previous algorithm, we relied on the fact that we could obtain the innovation

term, ²at+1, given that we have information on rt, rt+1 and ht. Speci¯cally, »1 and »2 were chosen

such that the ¯rst two moments of the approximating process in equation (19) matched the true

moments, while the probability values on the lattice are all between 0 and 1. Then, equation

(18) was used to compute ²at+1. This value is then used to compute the updated variance, h2
t+1,

in equation (20). With the introduction of chi-squared innovation, it is not possible to recover

the innovation term uniquely. Hence the algorithm has to be modi¯ed.

We ¯rst ¯x a grid of values for the state variable, rt, with adjacent points separated by ¢,

say. We also assume that there are a ¯nite number, K, of rescaling factors. Assume that we are

at a particular value for rt and ht that are on the grid of values. We approximate the normal

innovation term ²t+1 using a 2m+1-nomial random variable. Let P (j) represent the probability

of the jth jump, with j = 0;§1;§2; :::;§m. By using each of these points, we can compute the

2m+ 1 successor pairs of state variables, rnext and hnext. In particular, under the risk neutral

process, we have

rnext = ®+ ¯rt + ht[rt]
°1(²at+1 ¡ ¸t) + ¾(²at+1 ¡ (c+ ¸t))

2

h2
t+1 = F (h2

t ; ²
a
t+1; rt):

The backward recursion method for pricing claims proceeds as follows. Assume the current

\node" is (rt; ±k). We begin by establishing the next 2m+1 interest rates, and the next rescaling

factor. The updated value of the rescaling variable, ±kj say, is completely determined by the
11Approximating the 2n+ 1 point approximation for the standard normal random variable, ´t+1, can be done

in the same way as for the approximating 2m+ 1 point approximation for ²t+1.
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current value, ±k, by the current interest rate, rt, and by the interest rate innovation, which is

itself fully determined by the jth value of ²at+1. Let rnextj be the next approximating interest

rate, based on the jth jump of ²a; where j = 0§ 1; :::;§m. Note that the successor value, rnextj ,

may not necessarily fall on the grid of feasible values at date t + 1. For each of these interest

rates, we have to identify the two surrounding interest rates on the grid. Let rt+1;uj and rt+1;dj

be the interest rate on the closest grid point above and below rnextj . Let pj (1 ¡ pj) be the

interpolated weight assigned to the upper (lower) grid point. That is

pj = 1¡ rt+1;uj ¡ rnext;j
¢

At each of these two points, (rt+1;uj ; ±kj) and (rt+1;dj ; ±kj) we pick up the prices of the claim,

C(rt+1;uj ; ±kj) and C(rt+1;dj ; ±kj ) and make an appropriate interpolation to establish the theo-

retical value. This value is discounted at rt. This interpolation is repeated at all the 2m + 1

successor interest rates. The ¯nal price of the claim is obtained by weighting these 2m+1 prices

by their probabilities, P (j), where j = 0;§1;§2; :::§m: We have:

C(rt; ±k) = e¡rt
mX

j=¡m
[pjC(rt+1;uj ; ±kj) + (1¡ pj)C(rt+1;dj ; ±kj ]P (j)

As before, if the claim is American, then this value has to be compared to the intrinsic value at

this node. To obtain the intrinsic value, it may be necessary to ¯rst reconstruct the full term

structure at each setting of the state variables, (rt; ±k) on the grid.

The interpolations has the e®ect of increasing the variance, in such a way that the ¯rst two

moments on the lattice are a bit larger than their true moments. Convergence of prices on the

lattice, however, is guaranteed as m (which determines the 2m+1-nomial random variable used

to approximate the innovation term ²t+1) goes to 1 and as ¢ (which determines the spacing of

the interest rates on the grid) goes to 0.

To illustrate the convergence behavior on the lattice we consider bond prices using our pure

chi squared process, for which we have analytical solutions. Table 5 shows the convergence of

selected yields and option prices to the theoretical values as the approximating process for the

normal distribution is re¯ned. The analytical solutions for the yields were obtained using the

restricted version of the model in Proposition 1.

[ Insert Table 5 Here ]

VI Conclusion

This article has addressed the important problem of pricing interest rate claims under a large

family of two state variable processes, driven by either one or two stochastic drivers. The models

17



that we establish are all discrete time models in which the volatility follows a GARCH and/ or a

Regime Switching process. The models nest most of the single state variable models such as the

discretized version of the Vasicek and Cox, Ingersoll, Ross models. In addition, the innovation

terms were generalized to include not only Gaussian but chi-squared terms. The models therefore

allow interest rates to take on distributions quite distinct from normal distributions. By allowing

distributions to have skewness and kurtosis, the models have a good chance of removing the

volatility smile that is present when normal and lognormal processes are used in pricing claims

such as interest rate caps and swaptions. Further, since many of the GARCH processes have

di®usion limits that lead to stochastic volatility models, these models can be viewed as useful

approximations to their di®usion limit counterparts. The advantage of the GARCH models, is

that estimating the parameters of the process is straightforward, whereas a direct estimation of

a non observable volatility process is more complex.

This article presented analytical models for bonds when interest rate processes take on

particular GARCH and Regime Switching forms. These models nest the Vasicek model, but

since innovations need not be normal and since volatility follows a path dependent process, the

distributions of rates are far more °exible than the Vasicek model. The bene¯ts of such types

of models in explaining the time series properties of interest rates have been well motivated

by studies such as BHK. We now have provided models that permit interest rate claims to be

priced. It remains for future empirical research to evaluate the impact of incorporating cross

sectional derivative prices into the time series analysis.

While the analytical models presented here appear to be very °exible, additional gener-

ality can be established, at the expense of foregoing analytical tractability. A computational

scheme has been established that permits interest rate claims to be priced in a discretized

GARCH/Regime Switching model. The algorithm used to compute prices for a ¯nite discretiza-

tion of scaling factors has been shown to converge to prices of claims generated under continuous

state GARCH processes when the partition of scaling factors is suitably re¯ned.

There are two immediate applications of the models presented here. The ¯rst involves

empirical studies to ascertain the volatility structures in interest rate markets. Since bond

and other interest rate claims contain signi¯cant information on volatilities, it seems sensible

to incorporate cross sectional data on these items into the time series analysis. Hence studies

like Brown and Dybvig (1986) and Brown and Schafer (1994), in which term structure data

was incorporated into the time series analysis to test Cox Ingersoll and Ross models can now

be extended to incorporate other interesting models. As Campbell, Lo and MacKinlay note,

it would be desirable to repeat the BHK study using cross sectional information on derivative

security prices. The models developed here permit such studies to be performed.

The second immediate application is to price interest rate claims. Since our models contain

a ¯nite number of parameters, it is possible only to match a ¯nite number of points on an initial
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term structure. If traders desire models that match the term structure exactly, then this can

easily be accommodated by ¯rst subtracting the theoretical forward rates, developed using a

model calibrated to ¯t the ¯nite number of points, from actual forward rates. This yields a set

of residuals, which can be attributed to a deterministic term structure model. Speci¯cally, the

residuals are exactly equal to the logarithm of the pricing kernel of an independent ( determinis-

tic) term structure model. By multiplying the theoretical bond prices with the bond prices based

o® this second term structure model, one will recover the original term structure.12 Current

interest rate claim trading models heavily weight current information on the term structure and

on volatilities in calibrating parameters. Our models allow traders to incorporate historical time

series data into the analysis. It remains for future research to establish how heavily historical

data should be weighted in such a process.

While the focus of this paper has been on two state variable models driven by one or two

stochastic drivers, brief attention was paid to higher dimensional models. For example, we

showed that the models developed in Proposition 1 can be extended to multi factor models with

two stochastic drivers and up to 4 state variables. While algorithms for such models could be

constructed, such an analysis might be premature. Indeed, since the class of two state variable

models that now can be tested is large, signi¯cant empirical work needs to be conducted, and

their limitations need to be identi¯ed, before their multifactor extensions are considered.

12This methodology is very well explained on Page 456 of Campbell et al (1996).
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Appendix 1

Proof of Lemma 1

We have
dQ

dP
=
mT

m0
e
PT¡1

i=0
ri

Now, for any t < T , we have

EP [
dQ

dP
jFt] =

mt

m0
e
Pt¡1

i=0
ri :

Under measure Q, if Zt+1 is any integrable Ft+1 measurable random variable, then:

EQ[Zt+1jFt] = EP [Zt+1e
rtmt+1

mt
jFt]

To ¯nd the conditional distribution of ²t+1 under measure Q, note that:

EQ[ec²t+1 jFt] = EP [ertec²t+1
mt+1

mt
jFt]

Substituting for the marginal rate of substitution, and simplifying leads to:

EQ[ec²t+1 jFt] = e¡¸tc+
c2

2

This implies that, under measure Q, ²t+1 » N(¡¸t; 1).

Similar computations show that under measure Q, ´t+1 » N(¡Át; 1)

Proof of Proposition 1

The dynamics for the state variable under the Q measure is given by

rt+1 = ®+ ¯rt + ht(²t+1 ¡ ¸ht) + ¾(²t+1 ¡ ¸ht)2

h2
t+1 = a0 + a1h

2
t + a2(²t+1 ¡ (¸+ c)ht)

2 + a3(´t+1 ¡ (Á+ e)ht)
2

The proof is by induction. For n = 1

P (t; t+ 1) = e¡rt

For n = 2;

P (t; t+ 2) = e¡rtEQ[e¡rt+1jFt]
= e¡rtEQ[e¡®¡¯rt+¸h

2
t¡ht²t+1¡¾²2t+1+2¸¾ht²t+1¡¾¸2h2

t jFt]

Computing this expectation leads to:

P (t; t+ 2) = e¡A2¡B2rt+C2h2
t

Now, assume that

P (t; t+ n) = e¡An¡Bnrt+Cnh
2
t :
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Then,

P (t; t+ n+ 1) = e¡rtEQ[e¡An¡Bnrt+1+Cnh2
t+1jFt]

which after simplifying works out to be:

P (t; t+ n+ 1) = e¡An+1¡Bn+1rt+Cn+1h
2
t :

Appendix 2: Two factor Models with 4 State Variables.

The results of Proposition 1 generalize to models with more than one stochastic driver. As

an example, let the dynamics of the pricing kernel be:

¡ln(
mt+1

mt
) =

¸2
1;t

2
+
¸2

2;t

2
+ x1;t + x2;t + ¸1;t²1;t+1 + ¸2;t²2;t+1

where the state variables follow the processes:

x1;t+1 = ®1 + ¯1x1;t + h1;t²1;t+1

x2;t+1 = ®2 + ¯2x2;t + h2;t²2;t+1

with

h2
1;t+1 = a10 + a11h

2
1;t + a12(²1;t+1 ¡ d1h1;t)

2

h2
2;t+1 = a20 + a21h

2
2;t + a22(²2;t+1 ¡ d2h2;t)

2

Assuming the market prices of risk are proportional to their volatility levels we then can follow

along identical lines as in Proposition 1, to obtain:

rt = x1;t + x2;t

where valuation proceeds under the risk neutral measure:

x1;t+1 = ®1 + ¯1x1;t ¡ ¸1;th
2
1;t + h1;t²1;t+1

x2;t+1 = ®2 + ¯2x2;t ¡ ¸2;th
2
2;t + h2;t²2;t+1

where

h2
1;t+1 = a10 + a11h

2
1;t + a12(²1;t+1 ¡ (d1 + ¸1)h1;t)

2

h2
2;t+1 = a20 + a21h

2
2;t + a22(²2;t+1 ¡ (d2 + ¸2)h2;t)

2

The bond pricing equation then obtains as a product of two terms, with each term having a

structure as in Proposition 1.
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Appendix 3

Proof of Proposition 2

The proof is by induction. For one period, a simple application of the central limit theo-

rem tells us that rat+1 converges in distribution to a normal random variable with the required

mean and variance. Since h2
t+1 is a function of the rt+1 and rt, and h2

t+1 has at most a ¯nite

number of discontinuities, an application of the continuous mapping theorem (see theorem 25.7

in Billingsley (1995)) shows that h2a
t+1 converges in distribution to h2

t+1. We now have to prove

that the unconditional distributions across multiple periods converge. Now, if we show that the

two period unconditional distributions converge, then the proof for multiple periods follows by

induction. But the fact that two period unconditional distributions converge is a consequence

of the following version of the continuous mapping theorem.

Lemma

Let Xn and Yn be two sequences of random variables such that Xn converges in distribution

to a random variable X and Yn converges in distribution to Y . Suppose that h : R2 ! R1 is

measurable and that the set Dh of its discontinuities is measurable. If P [(X;Y ) 2 Dh] = 0 then

h(Xn; Yn) converges in distribution to h(X;Y ).

Proof of Proposition 3

Notice that we restrict the values of ht to a ¯nite number (K) of values. Using these values

we approximate h2
t+1 using simple step functions. Now, as we re¯ne the partition (that is

increase K) the approximating function closes the gap with the true function for h2
t+1. Using

this observation, for any one period, the approximating function h2
next converges pointwise (that

is for any given ht) to the true function h2
t+1.

To prove that it converges across multiple periods, we ¯rst consider the convergence over

two periods and then use induction to prove convergence over multiple periods. The two period

short rate and volatility values are given by

rt+2 = ®+ ¯rt+1 + ht+1r
°
t+1(²t+2 ¡ ¸t+1)

h2
t+2 = a0 + a1h

2
t+1 + a2h

2
t+1(²t+2 ¡ (d+ ¸t))

2

We see from these equations that both rt+2 and h2
t+2 are continous functions of h2

t+1 which in

turn are continous functions of h2
t . Hence an aproximation of h2

t+1 by simple step functions

which converges pointwise will also ensure that rt+2 and ht+2 converge pointwise.
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Table 1: Convergence of Yields for the Vasicek Model.
This table reports the convergence of yields using the algorithm when the dynamics under the Q measure are

given by

rt+1 = ®+ ¯rt + h0(²t+1 ¡ ¸)

The model was implemented using a trinomial approximation for ²t+1. The parameters were obtained by matching

the moments as was done in Backus et.al (1997). In particular, they matched the true unconditional mean, variance

and the auto-correlation of the one month short rate with the corresponding sample estimates obtained from the

McCulloch-Kwon (1993) data that covers the period from January 1952 to February 1991, involving 470 monthly

observations. This procedure yielded the values of ®; ¯ and h0. Finally, the value of ¸ was obtained by matching

the theoretical yield with the average yield from the sample of the 10 year maturity bonds. The parameters

obtained are ® = 0:000106272, ¯ = ¡0:024, ¸ = ¡0:082, and h0 = 0:00055 (or equivalently 0:67% per year).

The initial short rate was taken to match the average short rate over the sample period, yielding r0 = 5:314%

Note that the scaling factor, h0, in this model remains unchanged over time. The table shows that the trinomial

approximation with m = 1 is su±cient.

Maturity (Months)

3 6 12 24 36 38 60 120 Time

m=1 5.3682 5.4455 5.5869 5.8248 6.0157 6.1708 6.2981 6.6852 5.2

Analytical 5.3682 5.4455 5.5869 5.8249 6.0159 6.1710 6.2983 6.6856

Table 2: Convergence of Yields for the GARCH-Vasicek Model.
This table reports the convergence of yields using the algorithm when the dynamics under the Q measure are

given by

rt+1 = ®+ ¯rt + ht(²t+1 ¡ ¸)

h2
t+1 = a0 + a1h

2
t + a2(²t+1 ¡ ¸ht)2

The values for ®, ¯, r0, h0 are chosen as given in Table 1 and the rest of the parameters are a0 = 0:0000001,

a1 = 0:3, a2 = 0:0000002 and ¸h0 = ¡0:082. These values ensure that the long run average variance is stationary.

In this example m = 1 and the table shows the convergence of yields as the number of regimes are increased to

30.

Maturity (Months)

3 6 12 24 36 38 60 120 Time

K=1 5.368 5.446 5.587 5.825 6.016 6.171 6.298 6.686 5.4

K=10 5.374 5.471 5.661 5.983 6.242 6.452 6.624 7.147 41

K=15 5.374 5.476 5.670 6.000 6.265 6.481 6.657 7.193 65

K=20 5.373 5.473 5.667 5.598 6.264 6.480 6.657 7.193 86

K=30 5.373 5.474 5.670 6.005 6.274 6.492 6.671 7.215 144

Analytical 5.373 5.475 5.671 6.004 6.273 6.490 6.669 7.212
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Table 3: Convergence of Yields for the CIR Model.

This table reports the convergence of yields using the algorithm when the dynamics under the Q measure are

given by

rt+1 = ®+ ¯rt + h0r
°
t (²t+1 ¡ ¸r°t )

The model was implemented using a trinomial approximation for ²t+1. As in the Vasicek model (see Table 1) the

parameters were obtained by matching the theoretical moments with the sample moments of the one month short

rate. The parameters are ® = 0:000106272, ¯ = ¡0:024, ¸ = ¡1:07, and h0 = 0:00835577. The initial spot rate

was r0 = 5:314%. Note that the scaling factor, h0, in this model remains unchanged over time. The table shows

that the trinomial approximation with m = 1 is su±cient.

Maturity (Months)

3 6 12 24 36 38 60 120 Time

M=1 5.3610 5.4288 5.5555 5.7771 5.9632 6.1201 6.2532 6.6859 6

Analytical 5.3610 5.4288 5.5555 5.7772 5.9633 6.1203 6.2535 6.6862

Table 4: Convergence of Yields for the GARCH-CIR Model.

This table reports the convergence of yields using the algorithm when the dynamics under the Q measure are

given by

rt+1 = ®+ ¯rt + h0r
°
t (²t+1 ¡ ¸r°t )

h2
t+1 = a0 + a1h

2
t + a2(²t+1 ¡ ¸r°t )2

The values for ®, ¯, r0, h0 are chosen as given in Table 3 and the rest of the parameters are a0 = 0:000005,

a1 = 0:3, a2 = 0:68 and ¸
p
r0 = ¡9:862. In this example m = 1 and the table shows the convergence of yields as

the number of regimes increase to 40:

Maturity (Months)

3 6 12 24 36 38 60 120 Time

K=1 5.361 5.429 5.555 5.777 5.963 6.120 6.253 6.686 6.2

K=10 5.358 5.417 5.526 5.718 5.879 6.016 6.132 6.511 36

K=20 5.358 5.412 5.506 5.660 5.786 5.892 5.981 6.268 78

K=25 5.358 5.411 5.502 5.648 5.768 5.868 5.953 6.227 97

K=30 5.358 5.410 5.498 5.640 5.756 5.854 5.936 6.204 139

K=40 5.358 5.410 5.497 5.636 5.754 5.848 5.925 6.194 193
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Table 5: Convergence of Yields for Model with Chi-Squared Innovations.
This table reports the convergence of yields using the algorithm when the dynamics under the Q measure are

given by

rt+1 = ®+ ¯rt + h0(²t+1 ¡ ¸) + ¾(²t+1 ¡ ¸)2

The parameters used for this model are ® = 0:00010628, ¯ = 0:8, ¸ = ¡0:0824, r0 = 5:314%, h0 = 0:000278 and

¾ = 0:001. The gap, ¢, between successive interest rate is 20 basis points. The table shows the convergence of

prices to the true theoretical values.

Maturity (Months)

3 6 12 24 36 48 60 120 Time

m=1 5.589 5.874 6.189 6.433 6.525 6.572 6.600 6.655 13

m=2 5.591 5.879 6.201 6.453 6.548 6.596 6.625 6.683 17

m=3 5.592 5.883 6.212 6.471 6.569 6.619 6.649 6.708 22

m=4 5.592 5.885 6.216 6.478 6.577 6.627 6.657 6.717 26

Analytical 5.592 5.886 6.218 6.482 6.581 6.632 6.662 6.723
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Figure 1: Distribution of rt after 12 time periods for the GARCH-Vasicek model
The densities were obtained by simulating the following model for di®erent parameter values.

rt+1 = ®+ ¯rt + ht²t+1

h2
t+1 = a0 + a1h

2
t + a2(²t+1 ¡ dht)

2

The benchmark parameters in case 1 are: ® = 0:000106272, ¯ = 0:976, a0 = 0, a1 = 0:3, d = 0 and a2 = 3:09E¡09.

The starting values for r0 and h0 were set at r0 = 6:3%, h0 = 0:00055 (or equivalently 0:67% per year). For cases

2 and 3 the value of d was set at 15000 and -15000 respectively. As can be seen for di®erent parameters a wide

range of skewness can be observed by controlling the level of just one parameter.

-4 -2 0 2 4 6 8 10 12 14 16
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Figure 2: Convergence of Option Prices in the GARCH-Vasicek Model
This ¯gure shows the convergence of option prices in the GARCH-CIR model. The model used for computing

the option prices and the corresponding parameter values are the same as given in table 2. The option considered

here is a 1 year call option on a 2 year bond. The strike price was set at the forward price.
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Figure 3: Convergence of Option Prices in the GARCH-CIR Model
This ¯gure shows the convergence of option prices in the GARCH-CIR model. The model used for computing

the option prices and the corresponding parameter values are the same as given in table 4. The option considered

here is a 1 year call option on a 2 year bond. The strike price was set at the forward price.
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