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Approximating GARCH-Jump Models, Jump-Diffusion Processes, and
Option Pricing

ABSTRACT

This paper considers the pricing of options when there are jumps in the pricing kernel and
correlated jumps in asset prices and volatilities. We extend theory developed by Nelson (1990)
and Duan (1997) by considering limiting models for our resulting approximating GARCH-Jump
process. Limiting cases of our processes consist of models where both asset price and local
volatility follow jump diffusion processes with correlated jump sizes. Convergence of a few
GARCH models to their continuous time limits are evaluated and the benefits of the models

explored.

(GARCH option models, stochastic volatility models with jumps, limiting GARCH with Jump

processes )



Up until the 1990s the literature on continuous time models, used in theoretical finance and
especially in derivative modeling, and discrete time models, often favored in empirical studies,
developed along very separate lines. Most of the discrete time models were of the generalized
autoregressive conditionally heteroskedastic (GARCH) type, while the continuous time mod-
els were based on diffusion models. In the early 1990s researchers began to reconcile the two
approaches. In particular, Nelson (1990) showed that as the sampling frequency increased,
the volatility process generated within some GARCH models converged in distribution towards
well defined solutions of stochastic differential equations. Duan (1997) extended this work and
showed that most of the existing bivariate diffusion models that had been used to model asset
returns and volatility could be represented as limits of a family of GARCH models. As a result,
even if one prefers modeling prices and volatilities by a bivariate process, there may be advan-
tages in considering GARCH techniques. For example, by suitably curtailing the parameters of
generalized GARCH processes, we can obtain European and American option prices under the
stochastic volatility models of Hull and White (1987), Scott (1987), Wiggins (1987), Stein and
Stein (1991), and Heston (1993).

Unfortunately, there is now overwhelming empirical evidence that indicates that stock price
processes cannot be adequately characterized by bivariate diffusions, and that incorporating
jump components in both price and in volatility is necessary. For example, Bates (2000) and
Pan (2002) consider models where prices follow a jump-diffusion process with volatility being
characterized by a correlated diffusive stochastic process. Both authors show that such models
are incapable of capturing empirical features of equity index returns or option prices, and they
attribute this to the fact that volatility itself may contain jumps. More recently, Eraker, Jo-
hannes and Polson (2003) examine the jump in volatility models proposed by Duffie, Singleton
and Pan (1999), and provide a study that shows that the addition of jumps in volatility provide
a significant improvement to explaining the returns data on the S&P 500 and Nasdaq 100 index,

beyond a stochastic volatility model with just jumps in prices.

To date, the GARCH approximating models that have been considered in the literature are
set up for stochastic volatility diffusions. In light of the importance of jumps, both in price and
volatility, the current GARCH approximating models are inadequate. The primary purpose of
this paper is to propose a new set of GARCH models that include, as limiting cases, processes
characterized by stochastic volatility with jumps in price and volatility. The secondary purpose
of this paper is to explore the potential advantages of these GARCH with jump models over

their continuous time counterparts.

The discrete time model on which we rely in constructing our limiting models is that of
Duan, Ritchken and Sun (2004) (hereafter DRS). The DRS model has the property that the
conditional returns have fat tails and are skewed. As a result, local skewness and kurtosis present

in data can easily be matched. Further, much of the volatility smile observed in option prices



can be well explained by the DRS model. In addition, estimating the parameters of the DRS can
be readily accomplished using historical time series data and/or panels of option prices, using
standard maximum likelihood estimation techniques. This simplicity stands in contrast to the
rather delicate task of estimating parameters for continuous-time processes when the volatility
is a latent, nonobservable state variable, which, together with price, contain diffusive and jump

elements.!

We develop an approximating GARCH-Jump option pricing model that can be viewed in
parallel with the discrete time binomial option pricing models. Specifically, the binomial model,
which has the ability to approximate a variety of different diffusive or jump processes, depending
on how the limits are taken, serves as a work-horse for pricing European and American options.
We will show that our approximating GARCH-Jump model has the ability to lead to a wide
variety of stochastic volatility models that incorporate jumps and diffusive elements in prices and

volatilities, and also has the property that option prices can be relatively efficiently computed.

While our approximating GARCH-Jump models can be viewed as filters for continuous-
time stochastic volatility models with jumps in price and volatility, they also may be useful
for approximating the continuous time stochastic volatility models with jumps. Indeed, we
find that option prices generated under certain GARCH-Jump processes may converge to the
theoretical continuous time option prices faster than option prices computed under Euler or
Milstein discretization schemes of the continuous time processes. As a result, even if one believes
the true process to be a continuous-time jump diffusion process for both price and volatility, our
approximating GARCH-Jump models may still be useful because they could provide excellent

numerical schemes for computing option prices under the true processes.

The paper proceeds as follows. In the first section we establish the basic setup for the
pricing kernel and for the dynamics of the asset price over ever-shrinking trading intervals. This
approximating model extends the DRS (2004) model by introducing the element of interval
length. Our generalization of the DRS model allows for exploring limiting behavior. In section
2 we examine in detail some limiting cases of our model. We focus on models that converge to
processes containing diffusive and jump elements in both prices and/or volatilities. When jumps
are shut down in our model, then we are left with standard approximating GARCH processes for
which it is possible to obtain limiting forms that lead to options being priced as in Heston (1993),
Hull and White (1987), Scott (1987), and others. Further, when our approximating GARCH

While in the last decade, significant advances in econometric methodology have been made, these estima-
tion problems are still fairly delicate. Eraker, Johannes and Polson (2003) provide an excellent review of the
difficulties in adopting standard MLE or GMM approaches. Singleton (2001) discusses an approach using char-
acteristic functions. An alternative approach based on simulation methods using Efficient Method of Moments,
and Monte Carlo Markov Chains does resolve some of these issues. For an overview on econometric techniques to
estimate continuous-time models see Renault (1997), Jacquier, Polson, and Rossi (1994), Eraker, Johannes and

Polson (2003), and the references therein.



process is curtailed so that volatility is no longer stochastic, but jumps allowed in prices, our
limiting model nests the jump-diffusion model of Merton (1976), or the more general model of
Naik and Lee (1990). Of interest in this paper, however, is the more general case, when our
limiting models have both diffusive and jump elements in prices and volatilities. This allows
us to have proxies for the time series models used in Eraker, Johannes and Polson (2003) as
well as for jump-diffusion options priced along the lines of Duffie, Singleton and Pan (1999).
For the most part we focus on general equilibrium models where the dynamics of prices under
both the physical process as well as the risk neutral process are well specified. This allows us
to use standard maximum likelihood estimation on the time series, as well as panel data of
options, to readily estimate and/or calibrate the parameters. However, as is fairly common in
the derivatives literature, we could focus on the risk neutral process alone. If we do this, then less
structure is required in the drift term of the asset, and our approximating GARCH with jumps
models can be further generalized. In section 3 we conduct simulation experiments designed to
provide an indication of the speed of convergence of option prices. We carefully compare Euler,
Milstein and our approximating GARCH prices with true prices, and demonstrate the speed of

convergence of the GARCH-Jump prices to their jump-diffusion limits. Section 4 concludes.

1 The Basic Setup

We consider a discrete-time economy for a period of [0, 7] where trading takes place at any of
the n + 1 trading points 0, At, 2At....,nAt where n = %. Uncertainty is defined on a complete
filtered probability space (£2, F, P) with filtration F = (F)c(0,at,2¢,... nat=1} Where Fo contains
all P-null sets in F. Let m;a; be the marginal utility of consumption at date iAt.

For pricing to proceed, the joint dynamics of the asset price, and the pricing kernel, m:’?j?)tm )

needs to be specified. We have
MiAt

Sine = EX lSiAt
mEG-1)At

7’@-1)&] (1)

where S;a; is the total payout, consisting of price and dividends. The expectation is taken

conditional on the information up to date (i — 1)At, under the physical measure P.
We assume that the dynamics of this pricing kernel, m;a¢/m(;—1)a¢, is given by:
At a(At)+bT;(At) VAL 2)
M—1)At
where J;(At) is a standard normal random variable plus a Poisson random sum of normally
distributed variables. That is,

N;(A?)
Ji(At) = x© 4 Z x9 (3)



where XZ-(O) ~ N(0,1) and Xi(j) ~ N(u(At),v3(At)) for j = 1,2, ..., and N;(At),i=1,2,...n are
a sequence of independent Poisson random variables with parameter AA¢. Although we have
assumed a constant A\, our theoretical results remain valid if the Poisson parameter is stochastic,
and at each date, iAt, is F(;_;)a-measurable. The random variables, Xi(j )(At), are independent
forj=0,1,2...and ¢ =1,2,....n.

The asset price, S;a¢, is assumed to follow the process:

Sint _ fint( A+ Ti (M) VAL (4)
S(i—1)At

where J;(At) is a standard normal random variable plus a Poisson random sum of normal random

variables. In particular:
N;(At)

Tt =x"+ 3 X7 (5)
j=1
where )_(Z-(O) ~ N(0,1) and )_(Z-(j) ~ N(u(At),53(At)) for j = 1,2,.... Furthermore, for i =
1,2,...,n:
p ifi=4 and j =7

C’orr(Xi(j), )_(i(/j/)) = { (6)

0 otherwise,

and N;(At),i = 1,2..,n is the same sequence of Poisson random variables as in the pricing

kernel.

The expected value, EP(L(At)|.7:(i_1)At), and variance, Varp(ﬁ(At)|f(i_1)At), of J;(At)

are

EP(T(At) = Ni(At)At (7)
VarP (Ji(At)) = 1+ M2(At)AL, (8)

where A2(At) = 12 (At) + F2(Ab).

The Poisson random variable provides a random number of shocks in period i. Given that the
number of shocks in a particular period is some nonnegative integer k, say, the logarithm of the
pricing kernel for that period consists of a drawing from the sum of k£ + 1 normal distributions,
while the logarithmic return of the asset also consists of a drawing from the sum of k41 correlated
normal random variables. In either case, the first normal random variable is standardized to
have mean 0 and variance 1 because its location and scale have already been reflected in the
model specification. The structure for the means and variances, fi(-) and 52(-) as functions of

time are the same as those for u(-) and «(-) in the pricing kernel.

The local variance of the logarithmic returns for date iAt, viewed from date (i — 1)At is
hindVar(Jing) At = hini(1 + Ay?(At)At)At. We shall refer to h;a; as the local scaling factor



because it differs from local variance by a constant. In general, the local scaling factor, h;a¢,

can be any predictable process. We shall assume,

hiv1yae = H(hiat, Jint) (9)

DRS (2004) considered a special case of this model with At = 1, and restricted their considera-
tion to an updating process of the NGARCH form:

J; — EP(J) _6)2'

10
VarP (J;) o

hit1 = Bo + Brhi + B2h; (

Here [y is positive, and 31 and (32 are nonnegative to ensure that the local scaling process is
positive. J; in the last term is normalized to make this equation comparable to the NGARCH
model which typically uses a random variable with mean 0 and variance 1. Notice that when
A = 0 the model reduces to the NGARCH-Normal process used by Duan (1995). When A
is released from 0, the innovations are a random mixture of normals. This model, called the
GARCH-Jump model, was empirically tested by DRS (2004), who showed that the inclusion of
“jumps” significantly improved the fit of historical time series of the S&P 500, as well as helping
to explain a significant portion of the volatility smile in option prices. Note that by Duan (1997),
the process in equation (10) is strictly stationary if £y + 32(1+¢?) < 1. The unconditional mean
of hia is finite and equals By/ [1 — B1 — B2(1 + ¢2)] if B1+B2(1+¢?) < 1. The model we consider
is more general, in that the dependence on time increments is made explicit. For example, one

of the simplest updating schemes we consider has the form:

Ji(At) — EP(Ji(At)) _C>2At. (11)

hiiriyae — hine = BoAt + hine(B1 — 1) At + Bahing =
VarP (J;(At))

Notice that when At = 1, the updating equation reduces to the standard NGARCH-Jump model
given by equation (10).

For simplicity, we assume that the continuously compounded interest rate is constant, say,

r.2 Given the dynamics of the pricing kernel and the stock price, the following restrictions must
hold:

EF <mm¢|7:(i—1)m> = A (12)
(i—1)At
P miar  Sia
<m(i—1)At S(i—1)At |}-(Z_1)At> (13)

ZNote the constant interest rate assumption is not a necessity. We make this assumption so that there is no

need to specify an additional stochastic process for the interest rate.



These equilibrium conditions impose a specific form on the function, a(At) and fiai(At). In
particular, substituting equation (2) into (12) uniquely identifies a(At). Further substituting
equations (2) and (4) into (13), leads eventually to the following restriction on f(-):

h;
fint(At) = (r — 2“ — bpV hing) At + A&(At) (1 — Ki(hiae)) At (14)
where
k(At) = eb“(At)‘/EJF@N (15)
Ki(hiat) = e\/hz‘m(ﬁ(At)\/E+bp~/(At)~‘f(At)At)+hi%(WQ(At)At) (16)

To summarize, then, under the physical measure, P, we have:

P1] Sae = Sipyyagelar S0V (A)VET
hitnar = H(h;At, J;(At))

where,

Jiay = X0 42N %0 A

x© <~ N(0,1)

X9~ N(@(AL),32(AL) for j =1,2, ...
N;(At) ~ Poisson(AA?),

and f;a¢(At) is defined by equation (14). The dynamics of the pricing kernel
is given by equation (2).

While the above dynamics allow pricing of derivative claims to proceed, it is often more
convenient to identify the dynamics of the risk neutral process, under which pricing claims
proceeds as if all traders were risk neutral. Following along lines identical to Proposition 1 of
DRS (2004), under the risk neutral measure Q the dynamics of the asset price is distributionally

equivalent to



[Q1] SiAt = S(i_l)AtefiAt(At)‘i’\/hiAtji(At)\/E
hirnae = H(hAL Ji(At) + bpV/At)

~ ~ Vi(At)
Jay = x04 3 xV
j=1

x© <~ N(0,1)
X9~ N(a(AL) + by (ADF(A)VAL F2(AL)) for j = 1,2, ...

Ni(At) ~ Poisson(A(At)),i=1,2..,n
where A(At) = Ak(At)At, and

fint(At) = fine(At) — bpv/hini At, (17)

and f;a¢(At) is defined by equation (14).

Under measure Q, the overall dynamics of the asset price is similar in form to the dynamics
under the physical measure, P. In particular, the logarithmic return is still a random Poisson
sum of normal random variables. However, under measure Q, the mean of each of the normal
random variables is shifted. Similarly, the sequence of independent Poisson random variables
under measure P, are still independent Poisson variables under measure Q but with a shifted

parameter.

Notice from the return equations of the asset under measures P and Q that

Ji(At) = Ji(At) + bpV/AL. (18)

The expected value, EQ(ji(At)|.7-"(i_1)At), and variance, VarQ(ji(At)|.7-"(i_1)At), of Ji(At)
are:

EQ(J(A) = AA) (A(A) + bpy(Atyy(An)VAL) (19)
VarQ(J;(At)) = 1+ MAHFXAL), (20)

where 72(At) = (A(At) + bpy(A)F(AL)VAL)? + 72 (At).

2 Limiting Forms of the GARCH-Jump Process

In our model, over each time increment, At, the logarithmic return is a drawing from a normal

distribution together with a Poisson mixture of normal random variables. As At gets smaller and



smaller, the drawings consists of a single normal random variable plus an occasional drawing
from another normal distribution. The likelihood of any additional drawings will go to zero
at a rate faster than At. The limiting behavior of the stock price will obviously depend on
the structure of the parameters of the normal innovations as functions of the time increments
and upon the specification of the predictable updating process, H(-), for the scaling factor, h;a;.
Although one can obtain limiting models without jumps, (A = 0) this is not of particular interest
to us here because such limiting models have already been shown in the literature to arise as
limits of standard GARCH-Normal models. In this section we consider two cases for limiting
processes that differ according to the specifications for the means and variances as functions
of time for the X; and X; variables and the updating process for the scaling factor. The first
limiting model has price that follows a jump-diffusion process, while volatility follows a jump
process. The second limiting process has jump-diffusive terms in both prices and volatilities and
is based on a different updating scheme. We will provide the specific GARCH-Jump models and

their corresponding limiting forms under both measures P and Q.

2.1 Case 1: Jump-Diffusion Prices with Jumps in Volatility

In [P1], let
p(AL) = p/VAL,  F(At) =47 /At (21)
R(AY = i/VEE (M) = /A (22)

Further assume that the volatility updating scheme, H(-), is of the form:

Ji(At) — EP(Ji(Ab) _ c) 2 At (23)

hasnar — hine = BoAt + hiag(B1 — 1) At + Bahiat =
VarP(J;(At))

Proposition 1 below shows the limiting system of the approximating GARCH-Jump model
under this specification and with respect to the physical measure P. Towards this goal, let W;
be a Wiener process, m; a Poisson process with intensity A, and let Z;’s represent a sequence
of independent standard normal random variables that are independent of W; and m;. We then

have:
Proposition 1

Fix the initial state of the system at So and hg. The limiting system of the GARCH-Jump process,

[P1], under the volatility updating equation (23) and parameterization given by equations (21)
and (22) is

dinS; = fi_dt+ \/hy_ dW; + (ﬁzﬂ—t + ﬂ) h; dm (24)

dhy = (Bo+1he_)dt + ohy (Y Zn, + R)%dm, (25)



where
Y1 = Bit+ve(l+(1+X19%) -1
)2 Ba/(1+ A5
fi = - % — Vhibp + Ak(1 — exp(v/hy (i1 + bpy7) + %hﬂz))-

Proof: See Appendix.

First note that setting At = 1 for this GARCH-Jump process gives rise to the benchmark
discrete-time GARCH-Jump model studied by DRS. The limiting model has discontinuous stock
price and volatility paths. Notice that when 9 = 0, the scaling factor, h; is deterministic, and
with a further restriction of ¥ = 0, a simple constant-volatility jump-diffusion model obtains.
Thus, the jump-diffusion model of Merton (1976) is nested in this family. In our model both
intensity risk and jump magnitude risk are priced and the notion that jumps can only occur
in returns, but not in volatilities, is removed. When 1), is released from 0 then the volatility
process is no longer continuous. In this case, the drift of volatility is influenced by the continuous
innovations in the asset prices. Further, when jumps occur in returns, they are accompanied by

jumps in volatility.

We now consider the process under the risk neutral measure, Q. Let W; and B; be two
independent Wiener processes, 7; a Poisson process with intensity ), and let Z;’s represent a
sequence of independent standard random variables that are independent of Wt, B; and 7;. We

have:
Proposition 2

Fix the initial state of the system at Sy and hy. The risk neutral GARCH-Jump process, corre-
sponding to system [Q1] under the volatility updating equation (23) and parameterization given
by equations (21) and (22) is:

dinS, = fidt+\/h_dWi+ (YZx, + i+ bpy7) [he_diy (26)

dhe = (Bo+rhe)dt + ohy_(YZn, + [+ bpy7) die, (27)
where " )
Jo=r— 5 + 61— exp(VIu(i+ bpy) + 5hi7?),

and 1 and Yy have been defined in Proposition 1.
Proof: See Appendix

Proposition 2 shows that the overall behavior of the limiting processes under both measures
take on a similar form, with adjustments to the drift, intensity and to the magnitude of the

jumps, that reflect the risk premiums under measure P.



We can explore the convergence behavior of option prices generated by the GARCH-Jump
model as the time increment is refined. The convergence pattern will be investigated later in

Section 3.

2.2 Case 2: Jump-Diffusions in both Prices and Volatilities

The exact nature of the limiting models that we obtained depends on our specification of the
predictable process for the scaling factor, h;a;. In Case 1, we used an NGARCH specification.
As a result, given that a jump occurs, its size is directly proportional to h;as. Models can readily
be obtained where the effects of jumps are not proportional to the level of the scaling factor.
As an example, if we begin by replacing the NGARCH process, given in equation (10) with the
following discrete-time threshold GARCH model:

Ji—1 — \i Ji—1 — \i
¢ = Bo+ Bidr—1+ o ﬁ + B3 max <—ﬁ ) (28)
ht - ¢1%7 (29)

Different limiting processes are expected. For example, we could specify an approximating

process for ¢;, over time increment At, of the form:

ir1yar — Pint = (Bo + B2q2 + B3q3) At + dine (81 — 1) At

- .
o MM)E}MN»_ VAL
V(IT’P(Ji(At))
_ _ P
| max (_JZ(At) EN(JZ(At))’O) — | VAR (30)
I V(IT’P(Ji(At))
X - X
where o = EP m and ¢z = EF [ma:p (—W> ,0].

To obtain a specific model, we need to specify the structure of the parameters of the normal
innovations as functions of the time increments. If we assume the parameterization as in Case
1, the price process naturally becomes a jump-diffusion process similar to that in Proposition 1.

In particular for this structure we have:
Proposition 3

Fix the initial state of the system at So and hg. The limiting system of the GARCH-Jump process,
[P1], under the volatility updating equation (30) and parameterization given by equations (21)
and (22) is

dinS, = fidt+\/h dWi+ (72, + i) \[he_dmi (31)

10



(Bo + P22 + Bs(q3 + /\7MA) + (81 — 1)y )dt

Ay = 2W
B3
- dW, 1 /\ dB
SN TR + (B2 -l- + ’
1 ~ m — —
+ﬁ[ﬁzlvzﬁ + i + By max(—yZx, — [, 0)]dm; (32)
o= o (33)

where
h 1
Je=r— Et — Vhibp + Ak(1 — exp(v/ by (f + bpy7) + §ht72))-

Proof: See Appendix.

As a special case, the limiting volatility process, obtained by applying Ito’s lemma and letting

Bo + B2q2 + B3 ((B + \/?—2) = 0, is given by:

dh, B ﬁs) (77—2

(1+x) 2 1+w)+

m he_dWi + (202 + B3) U \/ht dBy
1 d7Tt

(82 17 Zx, + fi| + Bzsmax(—7Zx, — i, 0

(ﬁz + 2(/1—1) ht] dt

. (34)

1+ 252

In contrast to the limiting model in Proposition 1, this limiting form allows for jump-diffusion
in both price and volatility. This model is a mean-reverting square root process with jumps for
ht. By turning off jumps, the limiting model nests the square root stochastic volatility model
given in Scott (1987) and Heston (1993). Without switching off jumps, the volatility dynamic
in equation (34) is more general than that in Bakshi, Cao and Chen (1997), Bates (2000) or Pan
(2002), for it allows for volatility jumps as well.?

Finally, we consider the dynamics under the risk neutral measure. Let W; and B; be two
independent Wiener processes under measure Q. Under the same measure, let 7; denote a
Poisson process with intensity Ax that is independent of W; and B, and let Z;’s represent a
sequence of independent standard normal random variables that are independent of Wy, B; and
.

Proposition 4

Fix the initial state of the system at So and hg. The limiting system of the GARCH-Jump process,
[Q1], under the volatility updating equation (23) and parameterization given by equations (21)

3In our model, the same jump affects both price and volatility. If one wants to switch off just one of them,

two separate jump sources need to be built into the approximating model.

11



and (22) is:
dinS, = fidt+\[hy dWi+ (7Zx, + i+ bpy3) \Jhe_diy (35)

dor = (Bo+ B2q2 + B3(q3 + 2/\12;@) + (81— 1) )dt

N

B3 ~ B3 T—2 -
S N— 8 By ——=__dB
21+ \92 eH (Bt ) 1+ M2)
1 _5 _ _ _5 _ _ N
+m[ﬁzlﬂwt + fi + bpyA| + Bz max(—YZx, — i — bpy¥,0)ldT  (36)
he = ¢ (37)

where fy = — B + sl = exp(Vhu( -+ bpy7) + 1))

3 Convergence Speeds of Option Prices

In this section we examine convergence issues of GARCH-Jump option prices to their continuous
time limits. We assume that the true risk neutral processes are given by Proposition 2 for
our Case 1, and by Proposition 4, for Case 2. European claims can be priced directly off
the continuous time processes using Monte Carlo methods augmented with variance reduction
techniques. The underlying dynamics are typically approximated by Euler or Milstein schemes.
Our objective is to compare convergence patterns of these schemes, with those of the schemes
built around the approximating GARCH-Jump processes.

For both Cases 1 and 2, we take the limiting jump-diffusion processes and very carefully

’ option prices. The set consists of various strikes surrounding the 30

simulate a set of “true’
day at-the-money contract. The simulations are conducted using 50,000 sample paths and an
Euler scheme with a partition of 2!° = 1024 time steps per day, or equivalently a time partition
of about 84 seconds. In addition we use antithetic variance reduction techniques. The resulting

set of true option prices are stored.

We next pick a series of time partitions and use the Euler and Milstein schemes to establish
benchmark rates of convergence to the true prices. Finally, we compute the same set of option
prices using our GARCH-Jump approximating scheme using the same time partitions. Since
large sample sizes were used in the simulations, the standard errors of the estimates were gen-
erally smaller than one cent, and so the confidence intervals are not reported. The percentage
errors in the pricing are documented for each of the three approximating mechanisms and for
each time partition. As the time increments are refined, all three sets of approximating op-
tion prices should converge to their true common values. In this section we are interested in

documenting the relative speed of convergence.

12



To establish a set of parameters, we used the time series of the S&P 500 index values to
estimate the relevant parameters of equation (23) or equation (30), depending on the case. Both
estimations were conducted by setting At = 1 day. Since not all the parameters can be fully
identified from the time series alone, we estimated the models under the restriction that k = 1

and 7 = 1. The maximum likelihood estimation method is detailed in DRS.*

For Case 1 where the volatility updating scheme is an NGARCH model, our remaining
benchmark parameters are: [y = 1.65048FE — 07, 51 = 0.844, B2 = 0.0756, ¢ = 0.77138,
bp = —0.0723, A = 2.20, ¥ = 2.096, i = 0.0332.

For Case 2, the maximum likelihood estimates are: Gy = 2.3538e — 005, 51 = 0.95653,
B2 = 4.1551e — 006, F3 = 0.00034543, bp = —0.0278, A = 1.1478, ¥ = 1.2837, . = 0.04760.

In addition, for our experiments we assume r = 5% per year, Sy = 500, and the initial
volatility was 30% annualized. The time partitions start at one per day, two per day, four per

day, and keep doubling until we reach 1024 partitions per day.

Table 1 shows the percentage errors for both approximating methods over a full range of
strike prices for the 30- day contracts. As can be seen, the approximating GARCH-Jump process
produces consistently more accurate results except for the time partitions that are close to 1024.
Note that we have set the Euler approximation prices with a time partition of 1024 as the “true”
price. Needless to say, the results are “engineered” to be in favor of the Euler scheme when the

time partition is close to 1024.5
Table 1 Here

Note that the GARCH approximating scheme produces errors of magnitude less than one
percent for 256 partitions. Generally, this error is less than two cents and is of the order of

simulation error.

In order to gain a better understanding of the convergence behavior, we conduct an analysis
on the absolute difference between the approximating option price and the true price by relating

it to the number of time steps. In particular, the absolute difference can be approximated by:
|C(n) — Co| =~ an™°.
Let n = 2F and restating the above expression in terms of k we obtain:

|C(2%) — Cp| &~ a27%.

4DRS use panel of option prices in addition to time series data to estimate the parameters and to evaluate the
effectiveness of specific discrete time models, both from the point of view of explaining the volatility smile and

the ability to hedge over finite periods.
5A Milstein approximation was also used, but, as expected, the convergence behavior of option prices was

almost identical to the Euler scheme and so their results are not shown.
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Therefore,
In(|C(2%) = Cy|) ~ In(a) — kdIn 2.

A plot of the logarithmic absolute price difference in relation to k thus reveals the convergence
behavior. A smaller intercept implies a smaller convergence constant, i.e., a better numerical
scheme when k is small, whereas a steeper slope suggests a faster convergence rate, i.e., a better

numerical scheme when k is large.

Figure 1 shows how the option prices under Case 1 converge under the Euler and the GARCH-
Jump approximation schemes. The plots on the left-hand side reveal graphically the results in
Table 1. The plots on the right-hand side, however, indicate that the GARCH approximating
process has a smaller convergence constant and is competitive with the Euler scheme in terms of
the convergence rate. These convergence plots are merely suggestive, however. As noted earlier,
the Monte Carlo errors of the computed option prices are typically less than one cent. The same
magnitude of Monte Carlo error will have a much larger impact on the logarithmic absolute
pricing error for the points corresponding to larger k’s vis-a-vis the points corresponding to

smaller k’s.
Figure 1 Here

We now turn to Case 2 and repeat the above analyses. Figure 2 and Table 2 summarize
the overall convergence results and the general nature is fairly similar to Case 1 except that the

improvement over the Euler scheme in terms of the convergence constant is not as dramatic.
Table 2 and Figure 2 Here

Within the class of option models nested by Case 2 are many important models for which
analytical solutions for European options exist. However, there also are an enormous number
of potentially useful models outside the family of models for which analytical solutions exist.
For such models, our results provide an alternative to Euler approximations as a mechanism for

more efficiently computing option prices.

We experimented with other sets of parameters and the results seem fairly stable. In par-
ticular, with At = 1 or 0.5 days, option pricing errors under approximating GARCH processes

appears to be consistently smaller than errors generated by Euler approximations.

Even if one prefers to begin with modeling prices and volatilities by a bivariate process in
continuous time, as above, there are significant advantages in using the GARCH-Jump model as
an approximating device. In fact, the above numerical results indicate that the approximating
GARCH-Jump model provides a more efficient way of computing option prices than the use of

the Euler approximation scheme.
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4 Other Limiting Models

Clearly, the same methodology can be applied to different volatility updating functions, H(-),
to obtain different limiting jump diffusion models. It also is possible to allow the functional
dependence on time in the means and variances of the X and X variables to be of different
forms. For example we could retain an NGARCH structure, as in Case 1, but allow the means

and variances of the X and X to be of the form,

p(AL) = p/At (AL =42/ VAL (38)
A(AL) = p/AtV F2(A) = 5%/ VAL. (39)

In contrast to Case 1, where the limiting price follows a jump diffusion and volatility follows a
jump process, the parameterization leads to a limiting process where the price follows a diffusion,

and volatility follows a jump-diffusion.

To see this we modify the updating equation (23) to the form:
hiisnyar —hine = BoAt + hine(Br + Pa(1 + ) — 1)At

TAR — EP(T 2
+  Oehine (JZ(At) e _(JZ(At)) - c) —(1+ )| VAt (40)
VarP (J;(At))

Notice that for At = 1, this scheme is identical to the NGARCH scheme in Case 1. For this

specification, we have:
Proposition 5

Fix the initial state of the system at Sy and hg. The GARCH-Jump process under the physical
process given by [P1], with volatility updating scheme provided by equation (40), and parameter-
ization as given by equations (38) and (39) has a limiting system of the form:

dinSy = fi_dt+ /hy_ dW; (41)
dhy = {Bo+h [Br+ B (1+ = N52) — 1]} dt — 2¢Bshs_dWi + V2ohy_dB
+Bahy (VZr, + 1)° dy (42)

where fy =1 — % — Vhibp and 3% = i? + 72

Proof: See Appendix

This limiting model has continuous asset price paths but discontinuous volatility paths.
Unlike our previous case where the local scaling factor, h;, was not the local variance, in this

model the local scaling factor, h; does become the local variance. In this model §o plays an
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important role in determining jump and diffusion effects in volatility and the correlation between

volatility and return.

For completeness, in Proposition 6, below we consider the process under the risk neutral
measure, (). Although the limiting return dynamic under measure Q follows in a way similar to
its corresponding part under measure P, the limiting volatility process requires additional work

because more of the parameters are functions of At.

As before, let W; and B; be two independent Wiener processes, 7; a Poisson process with
intensity \, and let Z;’s represent a sequence of independent standard random variables that are

independent of Wt, B, and 7.
Proposition 6

The GARCH-Jump process under [Q1], with volatility updating scheme provided by equation
(40), and parameterization as given by equations (38) and (39) has a limiting system of the

form:
dinS; = fi_dt+ \/hs_dW; (43)

dh; = {ﬁo th [ﬁl + Bo (1 T L 2cbp) - 1} } dt
~2cfhhy_ dWs + V2Pol_dBy + by (72, + 1) d, (44)

where f; =r — % and 4 = i + 7.
Proof: See Appendix.

This example shows that the limiting form of the NGARCH-Jump model is not unique.
Comparing Case 1 with this example demonstrates that by altering the GARCH coefficients
(as functions of At), one can obtain different limiting models. In fact, a deterministic volatility
jump-diffusion model can also be obtained in a way similar to Corradi (2000). It is informative to
know such a possibility exists, but degenerate limits are not as constructive as the non-degenerate

limits presented in our paper.

The convergence rate for this example will not be expected to be rapid because of the terms
(At)%25 which converges rather slowly. Indeed, computational experiments confirm this slow

convergence.

If the objective is to develop efficient algorithms for pricing options under the risk neutral
measure then it should be recognized that there is no real need to link the dynamics of the
physical process with the risk neutral process. This being the case, there is no need to curtail
f(-) as we have done. Indeed, if the goal is just to price options with a flexible model, then one
can begin directly with the dynamics under the Q-measure. One advantage of this approach
is that the function f(-) is therefore less constrained. For example, we could specify the drift

term as being the drift term in the continuous limit process. The above propositions which link
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GARCH models to continuous time limiting models, therefore would continue to hold, but for

a larger class of f(-) functions.

5 Conclusion

In this paper we have extended Nelson (1990 Duan (1997) by considering limiting models for
the GARCH-Jump process. These limiting models can have diffusive prices and volatilities as

well as random correlated jumps in either or both processes.

In addition to establishing the dynamics under the physical probability measure, we also
identified the risk-neutral dynamics. The resulting limiting models are interesting in their own
right, converge rapidly to their continuous-time counterparts in comparison to the Euler ap-
proximation scheme, and allow us to relate discrete time GARCH-Jump models to the large

literature on stochastic volatility and jumps.

The approximating GARCH-Jump model for options contains as special limiting cases, jump-
diffusion models, like Merton (1976), and diffusive stochastic volatility models, like Heston (1993)
or Hull and White (1987). In addition, limiting cases of the model that allow for jumps in both
prices and volatilities can be constructed that allow for option pricing along the lines of Duffie,
Pan and Singleton (2001).

Of course, a disadvantage of the GARCH-Jump models is that they rely, for the most part, on
Monte Carlo methods for pricing. In contrast, as long as one remains in the class of affine models,
pseudo analytical solutions for Furopean options exist. To date, however, many problems with
affine models have been identified, and it is possible that we may have to search outside this
family. Further, even if one remains in the affine class, simulation techniques may have to be
invoked for pricing American options. So even within the class of affine models, the GARCH
approximating processes may prove useful for establishing efficient numerical schemes for pricing

claims.

Finally, our results related to a local volatility updating equation of the form based either on
an NGARCH or TGARCH updating scheme. Héardle and Hafner (2000) have investigated the
TGARCH volatility updating mechanism and using simulations, they conclude that this scheme
might be preferable. Since our theory is not limited to these two particular updating schemes,
other specifications could be considered. It remains for future empirical research to evaluate
alternative jump-diffusion models for prices and volatilities using the approximating GARCH

models outlined here.
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Appendix

Proof of Proposition 1

The GARCH-Jump model under measure P is

InSiar —InSi_1yar = fine(At) + Vhine Ji(At)V At

H— AivVAL c)zAt
V1492

Ji(A
hitiae — hiae = BoAt + hiae (81 — 1) At + Bahing < c
where fia¢(At), given by equation (14), becomes

h; _ 1 _
fint(At) = {r — 2B Riadbp + Ak [1 — exp (\/hiAt(:u +bpy7) + 5}%”2)] } At.

N; (At

In the above, J; (At) = XV + M3 X9 (At), XV ~ N(0,1), X7 (At) ~ N;(At)

e )

is a Poisson random variable with parameter AAt, and )_(Z-(j )( j=0,1,--) are independent.

It should be understood that we are dealing with the space of functions on [0, 7] that are
right-continuous and have left-hand limits, and this space is endowed with the Skorohod topol-
ogy.

First, we have the following result for the conditional mean return:

. At hi _ O
Jorpm &) P s [1 e (093 + S ).

At
Next, define
[nt/T]
HV@) = J(A)VAL
i=1
[nt/T) [nt/T] N;(At)
— Y XOVEE+ Y Y X9 (anvVEE
i=1 =1 j=1
and
[nt/T] 2
20 = 3 HA) ZMVAL ) g
V1+242

= [gjﬂ 0 ] At+2 WZ/T] 0 —c DR S0 X (ADAL - A (A
1_|_/\2 \/1-1-/\2 \/1‘|‘/\'A72

N Int/T1 (ZN A X9 (At VAE - /\uAt)

i=1 1492
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Note first that Zﬁl/ Tl )_(Z-(O)\/ At in Hy(Ll)(t) converges weakly to the standard Brownian motion
(2)

Wy by Donsker’s Theorem. By the law of large numbers, the first term in Hy’(t) converges in

¢ (0) 2 1 2( 14042
probability to tE( X — — ) = %ﬁ/;{)

1+2%
in Hy(L )(t) converges in probability to zero because )_(Z-(J )(At)At converges in probability to zero.

t for any t. It is also clear that the second term

The third term in Hflz)(t) can be computed as follows:

it/ 1 (Z;.V:igﬁﬂ X9 (At)VaL - Amt)2

2 NEe

i=1

] [t/T) (Ni(At) 2 [nt/T] Ni(At) [nt/T)
= T & ( 2 Xi(”(A”VAf) —2an Y Y XA (AP 4 N > (a0
=1 7=1 =1 7=1 1=

The last two terms in the above expression clearly converge in probability to zero.

In order to deal with the remaining terms involving the Poisson random sum, we note that
)_(Z-(J )(At)\/ At for different i or j are independent normal random variables with mean i and

variance 42. Thus,
i (At)
Z z( At \/ Xl(l)(At) V Atl{Ni(At):l} + Op(At)

and
Ni(Af) 2 _ 2
(Z Xi(”)(At)VAt) :(Xi(l)(At)\/At) Lin,an=1} + op(At).
=1

Note that A [nt/T] At converges to A\t. As a result, we have the following weak convergence:

Z[mt/T] ZN i (At) X(J)(At)\/A_ fO (5 Zn. + fi) drs
xi (z;i&“) XD (anVaL) [ Jy (VZw, + 1) drs ] |

Due to independence between the term that converges to the Brownian motion and those

converge to the compound Poisson processes, we have

l 0! ] . Wi+ i (72x, + ) drs
142 (142042 _ _ :
fzz)(t) = 14(”\2;/ )t + 1+}\~72 Jo VZr, + N)z dms

The bivariate approximating system can be expressed as a system of stochastic differential
equations with respect to (Hfll)(t), Hflz)(t)). Applying Theorem 5.4 of Kurtz and Protter (1991)

yields weak convergence to (S, hy). Thus, the limiting model under measure P is obtained.
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Proof of Proposition 2

By substituting for a(At) and y(At) in [Q1], under the Q measure, we obtain:

nSiar —Si_yae = fine(At) + VhintJi(At) VAL

~ h; 1
N {r— A s [1—exp (\/hmt(ﬂerpW)+§hmﬁz>]}ﬁt

M XD (An), X0~ N(0,1), X (A1) ~ N(EET 2 Ni(A) s

a Poisson random variable with parameter AxAt and )N(Z-(j )( j=0,1,--) are independent.

where J;(At) = )N(Z-(O) + >

The approximate volatility dynamic can be deduced:

hiityae — hiat

- 2
Ji(At) — AV At
BoAt + hiat (b1 — 1) At + Bahiae < (&) — An - C) At

VI+AY?
- 2
1+ Ax7? Ji(At) — A&(fn + bpyy) vV At
= At + h; —1)At — | h — (At ] At
BoAt + hine (61 — 1) +ﬁz<1+/\72> At< T+ Aed? " (At)

where

1+ Ak7? V1+ AkA2 '

Note that the second equality in the volatility dynamic follows from J;(At) = J;(At) 4 bpyv/At.

Similar to the case under measure P, we define

] /7]
HV@) = (A VAL
=1
nt/T = _ _ 2
f{(2)(t) — /] Z(At) - /\/{(/L + 5077) VAL _ *(At) At
O = VESver ‘ |
=1 v

Applying the same arguments as in Proposition 1 yields

Fintymiae(At) hi_ _ N B
N Ty + Ak [1 — exp («/ht(,u + bpyy) + §ht77 )]

and
l 70 (1) ] Wi + [ (VZWS i+ bpw) dis
~(2) — 1+02 1+>\A2 _~ _ _ 2 _ .
a2 (1) . fmj Vi 4 = o (WZWS + [ +bpw) dms

By the same reason, the limiting model under measure Q is obtained.
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Proof of Proposition 3

First, we have the following result for the conditional mean return:

Jinty1ae (At) he_ _ 1,
— A Ty~ hi_bp+ Ak [1 — exp (,/ht(,u + bpyy) + §ht77 )] .

Next, define

[nt/T]
gY@ = Y J(AnVAt
=1
[nt/T) [nt/T] Ni(At)
- ZX(O\/ ey Y xU(AnVAT
=1 gj=1
Moreover,
H2 () = VAt, and
*) ; [ V14 /\7 S® ]
[nt/T)
—AWA IN7
n () g [ < 1 V14232 o
Thus
o [t/ T] UM : U
H? (@) = Lin (An =0y || ———e—| — At
(t) ; {Ni(At)=0} H NiESYE qzl
[nt/T] XOVAL+ N3 X (AVAL — At —
+ D Lwianzo) ) ~ VAL
— V14+ Ay
[nt/T] 1] +(0)
XV — t
_ i _AEVER L VA
H VI q2]
[nt/T] c(0) -
X, = ApVAt
— Ten —— | — VAt
; {Ni(At)£0} H e qzl
[nt/T] XOVAL+ A XD (AN VAL - At —
+ 2 Lmvanzo) JIEA? ~ VAL
=1 +/\7
[nt/T] [| <(0) [nt/T] | s~V (At) (J) \/
— H—Z — —qz] VAL + Z 2= ( 2) + op(VAL)
= VI+ MY VI+ MY

The last equality holds true because we collect the terms that are in the order of v/ At or higher
when a jump occurs, i.e., 1yy,(an0; and denote it by op(v/At). Similarly,

[nt/T] ¢ (0) =

X = AnvV At

H3 @) = E max | ——+————,0| — VAt
®) Pt [ VI+A32 @
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[nt/T] ( ZN i(At) X(J)(At)\/A_

+ ; max NiEwvE ,0) + op(VAL).

The first terms of Hy(Ll)(t), y(Lz)(t) and Hy([g’)(t) together have the following weak limit

Z[nt/T] X(O)\/A_ W,
[nt/T] xO _\pVAt
2ie H Vi || VA d Vi B
- (0) i _ T—2
Z&;{T] max (—%ﬁ, 0) — (B] VAt 2\/1+,Wz)t 2\/1+,Wz Wi+ 47r(1+,\~72)Bt

The weak convergence of the first element is standard. For the second and third elements, we
can still apply the standard weak convergence result as long as we properly deal with the extra
term, Ajiv/At. First note that

s

VAL V1422

t
—Q2] — 0

and

m—2
Var || = .
o H NiEDvr ] TR+ A

Thus, one can effectively ignore Afiv/ At as far as the limit for the second element is concerned.

(0) /AL _
! lEmax( Xi —AnvA ,0) (B] — A

Next we note that

VAL V1492 21+ M\9?
and
. X" VAt . m—1
ar |max , —_
V14 Ay2 27(1 4+ Ay2)
. . i
Thus, the third element must contain an extra term . \/Wt

We now turn to the terms involving the Poisson random sum, we note that X Z-(j )(At)\/ At for

different i or j are independent normal random variables with mean ji and variance 52. Thus,

i (At)
Z T (A)VAL = XPV(AVALLy,(an=1) + or(Al)

and
Ni(at) _
3 Xi(J)(At)\/At = ’Xi(l)(At)\/At’ Lini(an=1} + op(At).
j=1
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As a result, we have the following weak convergence:

Z[@/T] ZNi(At X(j)(At)\/A_

t _
Z[nt/T] ZN S (At) X(])(At) { lfo (’VthS_-i' M) d7js
=1 V14252 = VIIA2 Jo W2, + il drs .
ST <_Z;V iAi)/X(”(At)\/_ 0) \/ﬁ Jo max (—3Zx, — i, 0) drs
= 1+242 ’

Due to independence between the terms that converge to the Brownian motions and those

converge to the compound Poisson processes, we have

7O (1) I Wi + J (WZ + fi) dr, 1

T—2
H%zi(t) — Voo Bt s 1“ = Jo WZ + | dms .
3 i 1 _
n (t) 2\/1_5)\4/2)15 — 2\/1_1_)\;/2 Wt + 4“_(1_1_)\7 t + \/W f(] ( — My 0) dﬂ's

The bivariate approximating system can be expressed as a system of stochastic differential
equations with respect to ( (1)( t), 'r(Lz)(t), flg)(t)). Applying Theorem 5.4 of Kurtz and Protter

(1991) yields weak convergence to (S, ¢¢). Thus, the limiting model under measure P is obtained.

Proof of Proposition 4

We observe that the approximating bivariate system under measure Q is the same as that under
measure P except that (i) the volatility dynamic under measure Q contains (bp — A\i)V At as

opposed to =i/ At, (ii) )N(i(j)(At) ~ N (%b—ﬁﬂ, %) under measure @ as opposed to )_(i(j)(At) ~
N (T/%’ %) under measure P, and (iii) N;(At) has Ax as the parameter as opposed to N;(At)
is governed by parameter A\. The statement of this proposition can thus be established in the

same way as that under measure P.
Proof of Proposition 5

The model under measure P is directly obtained from [P1] given the assumed structure for i(At)

and J(At). We have the following result for the conditional mean:

Tinty1ae(At) he_
et LA

At Ty e be
Next, define
[nt/T]
HV () = Ji(At)VAL
=1
[nt/T] [nt/T] N;(At)
= Y XOVAIL Y Y xP(anVAr

i=1 =1 j=1
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The second term in the above equation converges to zero in probability because )_(Z-(j )(At)\/ At

converges to zero in probability. Moreover,

HO(1) = [7%] (J_Z(At) — A (Ap** B c>2 B (1 _|_Cz) VAL

i=1 V14 A2V AL

nt/T S 2
- ( Xi(O) —c) —(1—1—62) VAL

= 2

2y (L ] ) (z;v;?“ X080 VAT A <At>5/4)
i=1 1+ M2VAt L+ A92VAt
[nt/T] ZN i(At) Xi(j)(At) (At)1/4 — MiAt ?
" Z ( 1+ M2VAt )

Note that the second term in the above equation also converges to zero in probability because
)_(Z-(J )(At)\/ At converges to zero in probability.

Then note that
[g:T] { ( £

—— —c¢C
14+ M2VAL )

- s FW]K X0 - TV E) = (12) (1257 Va7

[nt/T]

_ 1+A12 [(X(O —c 1—1—/\72\/At> [1+¢2 (1+M2\/At)” VAt
F2VA

/\A2

1+ M2VAL Z A

> -1+ 62)} VAt

[nt/ 7]

The standard weak convergence argument leads to:
ST 50 VS
2
[nt/T] v (0) _ < _ 2 2 [
T T KXZ /1 + /\72\/At> [+ (140 \/At)” VAL

In addition, we have

Wi
—2CWt + \/§Bt

[nt/T)

22
A Z At — M2t

14 /\72\/_
(2)

For the term involving the Poisson random sum in Hy ™’ (t), we follow the same argument as



in the proof for Proposition 1 to obtain:

n Ni A o (J m ?
%T](Zj:ﬁ VXA <At>”4‘A“N) — [ 2, + )i
0 ’ ’

i=1 14+ M2V AL

because )_(i(l)(At) (At)/* is a normal random variable with mean fi and variance 4. Again due

to independence between the Brownian motions and the compound Poisson process, we have

| _ Wi

HP(1) N2 —2eW; + V2By + [ (7 Zn, + i) drs |
Applying Theorem 5.4 of Kurtz and Protter (1991) yields the weak convergence to the limiting
model under measure P.

Proof of Proposition 6

Under the assumed structure for ii(-) and 5(-), we have:

EQUJ(AY) = MA? (ﬂ (At)_1/4—|—bp'y'_y)

where
2 =2
Pan = (man + o)+ JE
k(At) = (A T2y AL

The volatility scaling updating scheme given in equation (40) can be reexpressed as
hiivyae — hiat = BoAt + hiat (ﬁ1 + B2 (1 + 62) — 1) At +

Ji(At) — EQ(J;(At
VarQ(J;(At))

2
B3 (At)hint ( ))—c*(At)) — d*(At) | VAKA.D)

where

EP(Ji(At) — EQ(Ji(AL) — bpV/AL + ¢/ VarP (Ji(A)

c(At) =
(40 VarQ(J;(At))
. L VarQ((Ar))
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Now, note that
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The conditional mean process has the following limit:
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Similar to the case under measure P,
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The second term in the above equation converges to zero in probability because )N(Z-(j )(At)\/ At

converges to zero in probability. Moreover,
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Note that the second term in the above equation also converges to zero in probability because
)N(Z-(J)(At)\/At and A\(At)V/At converges to zero.

The weak convergence argument similar to Proposition 5 leads to:
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The extra term — (2cbp+ Aj?) ¢ is due to the fact that (A0 —d (A\;)—A)t(H)\(At) 7(a)

—2chp — A2, a result established earlier. For the term involving the Poisson random sum in
~7(L2)(75), we have
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because )N(i(l)(At) (At)/* is a normal random variable with mean fi and variance 42. Again due

to independence between the Brownian motions and the compound Poisson process, we have
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Thus, the limiting model under measure Q is obtained.
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Table 1
Convergence of Percentage Errors in Option Prices for Case 1

The Table shows the percentage errors in option prices using the Euler and approximating GARCH-Jump schemes. The
top entries show the convergence behavior of errors when the Euler approximation scheme is used. The bottom entries
in each row show the errors when the approximating GARCH-Jump option model is used. The models are shown
below where the relevant variables are defined in Proposition 2. The percentage error is defined as the GARCH (or
Euler) price minus the true price divided by the true price, and reported as a percentage. The true price is the Euler
price based on 1024 partitions per day. The parameter values used are discussed in the text. The option contracts are
European calls with 30 days to expiration. In all cases 50000 simulations were used using antithetic control variables
The specific approximating GARCH-Jump model, corresponding to [Q1] for Case 1 reduces to:

Jiae (AT a T (Af)VAL

Siat = Si—1)ae
h{i——]'};ﬁf — h,‘_.-_\; = _-"}{]Af -+ J'J,'A; ()’] — ])Af
. - 2
1+ Aey? Ji(At) — Me(fi + bpy) VAL _
o (LEATTY g, (ZEDZRE L WAVDVAL e (ap))
1+ 25 V14 Aky2

where ji(Af} = /\h’i([]) + Z;EEAF)X:'U)(A”' with Xva{“} ~ N(0,1) and X,'U)(Af} ~ \-(F;b\/_\_r{fl_A %)

and N;i(At) is a Poisson random variable with parameter A\kAt and

Fine(At) = (;-_’I’{f‘);\ur,\h-(l—1\',-0@))5;

Ki(hiat) = (?v]h'-_uU!+hﬂ“.-"r')+%hf-_\r“-"‘z
FA) = ¢ / 1+ A42 n [Afi — Ak(ji + bpy7y) — bp] VAL
| V1432 VI A2

where 3% = (ji + bp3Y)2 + 42, and ;'i",-(Af) is a Poisson random variable with parameter AkAt.

The Continuous Time Limit Model is given in Proposition 2.

Number of Partitions per Day

Strike 1 2 4 8 16 32 64 128 256 512 1024
450 61.36 32.89 17.36 9.41 4.47 2.44 1.08 0.23 0.48 0.66 -
3.02 2.63 1.87 178 1.05 0.82 0.36 -0.12 0.34 0.58 -0.061
460 68.03 36.60 19.37 10.52 5.03 2.75 1.25 0.29 0.56 0.76 -
3.47 3.05 2.19 2.08 1.25 0.98 0.50 -0.06 0.44 0.70 -0.032
470 75.41 40.67 21.56 11.75 5.63 3.08 1.43 0.34 0.65 0.86 -
3.99 351 2.55 243 1.48 117 0.64 0.01 0.56 0.84 0.002
480 83.55 45.14 23.95 13.07 6.29 3.44 1.61 0.40 0.74 0.98 -
4.56 4.03 2.95 2.82 1.74 1.38 0.79 0.08 0.69 1.00 0.044
490 92.52 50.01 26.55 14.48 6.97 3.82 178 0.44 0.82 1.09 -
5.21 4.59 3.39 3.22 2.02 1.60 0.93 0.15 0.81 1.16 0.096
500 102.40 55.32 29.35 15.99 7.69 4.21 1.96 0.49 0.90 1.21 -
5.94 5.22 3.87 3.65 231 1.84 1.08 0.22 0.95 1.35 0.158
510 113.29 61.08 32.38 17.60 8.46 4.64 2.13 0.54 0.99 1.33 -
6.77 5.91 4.40 4.10 2.62 212 1.24 0.31 111 1.54 0.234
520 125.23 67.34 35.63 19.32 9.24 5.09 231 0.59 1.08 1.45 -
7.66 6.66 4.97 4.56 2.93 2.42 141 0.40 1.28 1.75 0.323
530 138.34 74.13 39.14 21.14 10.06 5.56 2.49 0.63 1.15 1.59 -
8.66 7.51 5.58 5.07 3.28 274 158 0.51 1.45 1.98 0.423
540 152.70 81.48 42.90 23.08 10.94 6.03 2.63 0.66 1.22 1.72 -
9.79 8.44 6.25 5.63 3.65 3.07 1.75 0.61 1.62 2.22 0.529
550 168.43 89.43 46.93 25.14 11.86 6.50 2.79 0.68 1.30 1.84

11.04 9.45 7.02 6.25 4.02 3.39 1.92 0.73 1.83 2.46 0.648



Table 2
Convergence of Percentage Errors in Option Prices

The Table shows the percentage errors in option prices using the Euler and GARCH-Jump approximation schemes. The
top entries show the convergence behavior of errors when the Euler approximation scheme is used. The bottom entries
in each row show the errors when the approximating GARCH-Jump option model is used. The models are shown
below where the relevant variables are defined in Proposition 4. The percentage error is defined as the GARCH (or
Euler) price minus the true price divided by the true price, and reported as a percentage. The true price is the Euler
price based on 1024 partitions per day. The parameter values used are discussed in the text. The option contracts are
European calls with 30 days to expiration. In all cases 50000 simulations were used using antithetic control variables.
The approximating GARCH-Jump Model defined in [Q1] for this case reduces to:
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where J;(At) = X, + X4X; (At), X; ~ N(0,1), X;”/(At) ~ N( N/REN
and N;(At) is a Poisson random variable with parameter AeAt and
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The Continuous Time Limit Model is given in Proposition 4.
Number of Partitions per Day
Strike 1 2 4 8 16 32 64 128 256 512 1024
450 11.05 5.56 2.90 1.47 0.70 0.39 0.09 0.07 0.01 0.02 -
-0.85 -0.90 -0.53 -0.54 -0.36 -0.47 -0.25 -0.09 -0.01 0.01 -0.02
460 14.19 7.24 3.81 1.96 0.95 0.53 0.12 0.09 0.01 0.04 -
-1.26 -1.30 -0.79 -0.76 -0.52 -0.68 -0.35 -0.14 -0.03 0.01 -0.02
470 18.11 9.36 4.92 257 1.25 0.69 0.13 0.11 0.00 0.05 -
-1.81 -1.81 -1.18 -1.09 -0.75 -0.95 -0.51 -0.22 -0.06 0.02 -0.05
480 23.02 12.03 6.32 3.35 1.64 0.91 0.15 0.17 0.00 0.06 -
-2.51 -2.45 -1.68 -1.46 -1.00 -1.27 -0.72 -0.30 -0.07 0.05 -0.09
490 29.15 15.29 8.05 4.30 2.08 117 0.19 0.25 0.06 0.07 -
-3.37 -3.25 -2.31 -1.91 -1.32 -1.66 -0.97 -0.39 -0.06 0.10 -0.15
500 36.71 19.26 10.16 5.46 2.58 1.45 0.22 0.33 0.10 0.10 -
-4.38 -4.23 -3.03 -2.49 -1.73 -2.14 -1.30 -0.52 -0.07 0.15 -0.22
510 45.97 24.08 12.68 6.79 3.24 1.84 0.30 0.37 0.10 0.14 -
-5.60 -5.39 -3.85 -3.19 -2.19 -2.72 -1.60 -0.68 -0.14 0.14 -0.28
520 57.32 29.86 15.71 8.31 4.02 2.27 0.34 0.37 0.03 0.18 -
-7.04 -6.78 -4.76 -4.04 -2.80 -3.36 -1.93 -0.90 -0.26 0.07 -0.32
530 71.29 36.75 19.33 10.15 4.89 2.83 0.43 0.44 0.03 0.32 -
-8.58 -8.36 -5.68 -4.99 -3.49 -4.08 -2.25 -1.15 -0.37 -0.02 -0.32
540 88.28 44.86 23.51 12.17 5.77 3.36 0.54 0.47 -0.01 0.36 -
-10.34 -10.20 -6.75 -6.14 -4.31 -4.94 -2.64 -1.40 -0.52 -0.21 -0.44
550 109.09 54.49 28.35 14.41 6.63 3.92 0.72 0.42 0.06 0.32

-12.23 -12.14 -7.96 -7.42 -5.25 -5.77 -3.07 -1.76 -0.71 -0.35 -0.62



Figure 1
Comparing Convergence Rates of GARCH to Continuous Time Limits for Case 1

The graphs compare the percentage errors in option prices produced by the GARCH-Jump model with the Euler
approximation scheme. The number of time increments per day are indicated on the x-axis . 50,000 sample paths were
used to construct the prices, and antithetic control variates were used. The true prices were taken as the prices produced
by an Euler scheme using 2000 partitions per day. The left panel shows the convergence behavior for 30 days call
contracts and the right panel shows the convergence rate. The underlying price at date 0 is 500, and the option strikes
are indicated. The parameter values correspond to those of our estimated model. The parameters were estimated from
time series data on the S&P 500 as outlined in Section 3.
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Figure 2
Comparing Convergence Rates of GARCH to Continuous Time Limits for Case 2

The graphs compare the percentage errors in option prices produced by the GARCH-Jump model with the Euler
approximation scheme. The number of time increments per day are indicated on the x-axis . 50,000 simulations were
used to construct the prices, and antithetic control variates were used. The true prices were taken as the prices produced
by an Euler scheme using 2000 partitions per day. The left panel shows the convergence rate for 30 days call contracts
and the right panel shows the convergence behavior. The underlying price at date 0 is 500, and the option strikes are
indicated. The parameter values correspond to those of our estimated model. The parameters were estimated from time
series data on the S&P 500 as outlined in Section 3.

Strike 470; Maturity 30 days Strike 470; Maturity 30 days
20 4

In(|error|)

Percentage Error

-10 o o o o o o o o Euler

In(|error|)

Percentage Error

In(|error|)

Percentage Error

-20 o o o Ll Ll Ll Ll Ll Euler -8 T T T T T Ll Ll Ll Euler




