Striking a Balance in Boundary-Spanning Positions: An Investigation of Some Unconventional Influences of Role Stressors and Job Characteristics on Job Outcomes of Salespeople

Most previous studies have focused on the linear effects of role stressors and job characteristics on salespersons’ behavioral (e.g., performance) and psychological (e.g., satisfaction) job outcomes. Drawing on the theoretical frameworks of Yerkes-Dodson law, activation theory, and overstimulation hypothesis, the author examines some unconventional hypotheses of curvilinear and interactional influences of role stressors (i.e., role conflict, ambiguity, and overload) and job characteristics (i.e., autonomy, feedback, task variety, and participation) on five key job outcomes of salespeople. Using data from salespeople across a range of small and large firms, the author finds that curvilinear and/or interactional influences are supported for job tension, turnover intentions, and performance but not for job satisfaction or organizational commitment. The findings specifically indicate support for the overstimulation hypothesis because the dysfunctional effects of role ambiguity tend to be amplified when autonomy, feedback, and task variety are increased. In addition, the results yield evidence of buffering effects because the adverse consequences of role conflict and overload appear to be buffered by task variety and feedback. Overall, the study highlights the inherent trade-offs for sales managers attempting to design jobs with positive job characteristics for salespersons facing high levels of role stressors. The author discusses the implications for theory and practice.

The following are some typical options a sales manager encounters in dealing with issues of role stress (e.g., ambiguity) and job enrichment (e.g., autonomy) among his or her salesforce:

- Develop detailed procedural guidelines for handling different sales situations. This will increase role clarity, reduce role ambiguity and conflict, and enhance performance.
- Provide greater variety (e.g., handle different types of products) and participation (e.g., in goal-setting decisions). Although less likely to affect role stress directly, this option would enrich salespeople’s jobs and stunt the effects of role stress.
- Increase the autonomy of (e.g., in making pricing decisions) and feedback provided to (e.g., regarding monthly performance) individual salespeople. The salespeople thus will have greater latitude in, and regular information to deal with, stressful sales situations.

Conventional wisdom, based on meta-analyses in marketing (Brown and Peterson 1993; Churchill et al. 1985) and elsewhere (Fisher and Gitelson 1983; Fried and Ferris 1987; Griffin, Welsh, and Moorhead 1981; Jackson and Schuler 1985; Loher et al. 1985), suggests that each of the preceding options is plausible because (1) reduction in role ambiguity (stress) invariably increases job satisfaction and performance, (2) greater autonomy and feedback help reduce role stress and increase job outcomes, and (3) an enhanced level of job characteristics likely increases job satisfaction and performance and buffers the effects of perceived role stress (Fried and Ferris 1987; Jackson and Schuler 1985). Also, the empirical evidence in these literature and meta-analyses indicates that reducing role stressors (e.g., conflict, ambiguity) has the most significant impact on job satisfaction (Brown and Peterson 1993, p. 72) and performance (Churchill et al. 1985, p. 113) of salespeople.

Unfortunately, most previous studies have tended to examine only linear relationships among role stressors, job characteristics, and job outcomes. This is problematic because an historical review of medical and organizational psychology literature suggests that simple linear effects might be masking much deeper fundamental forces. For example, more than 40 years ago, Selye (1956) used Yerkes and Dodson’s (1908) clinical studies to posit that stressors and performance are related by an inverted U-shaped func-

Jagdip Singh is Professor of Marketing, Weatherhead School of Management, Case Western Reserve University. The author thanks Sebastian van Droogenbroeck for his help with some portions of the data analyses. In addition, the author appreciates the helpful comments of Gary Rhoads, John Murray Jr., and three anonymous JM reviewers on previous drafts of the article. The author acknowledges partial financial assistance from the Marketing Science Institute.

Journal of Marketing
Vol. 62 (July 1998), 69–86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
tion so that both low and high levels of stressors are dysfunctional. Between these levels, role stressors have a positive influence because they challenge the worker to perform at a higher energy level (Levi 1972; McGrath 1970). This intriguing idea of “eustress” at intermediate levels and “distress” at low and high levels of stress possibly is obfuscated by a myopic focus on linear effects (Brown and Peterson 1993; Churchill et al. 1985; Jackson and Schuler 1985). Similarly, Champoux (1978) used Malmoe’s (1959) activation theory to propose that unduly high levels of job characteristics might be dysfunctional because of an overstimulation effect. As such, only intermediate levels of job characteristics are posited to have positive effects on salesperson outcomes, resulting in an inverted U-shaped relationship. This “overstimulation” hypothesis has remained largely untested (Fried and Ferris 1987). Finally, also unexplored is the possibility of interaction effects between role stressors and job characteristics. Karasek (1979) and Xie and Johns (1995) note that high levels of job characteristics for those experiencing high role stress may result in further deterioration, not enhancement, of positive job outcomes.

Because salespeople serve a critical boundary-spanning role (Belasco 1966; Dubinsky et al. 1986) and are different from other “internal” employees, testing the inverted U-type and interactional hypotheses in a sales context appears useful for researchers and managers alike. This examination would address theoretically plausible but largely unanswered empirical hypotheses along such lines as, “Salespeople may perform poorly because they have too little role stress.” “Salespeople may be less effective and satisfied because of too much autonomy and feedback,” and “The negative effects of role stress may be enhanced by increased levels of participation and variety.”

The aim of this article is to address some of the preceding issues. Because marketers might not be familiar with the rationale underlying the unconventional effects, I first review the literature and develop hypotheses for linear, inverted U-type, and interactional relationships. The inclusion of linear effects helps place this research in a “competing models” perspective. That is, I examine if my hypotheses for inverted U-type and interactional effects offer significant additional insights relative to the conventional model of linear effects. Thereafter, I describe the analytical method and results of the hypotheses testing using a sample of salespeople from a range of small and large firms. Finally, I discuss my findings, propose future research directions, and extract guidelines for sales managers.

Research Background and Hypotheses

Before I review the research findings for role stressors and job characteristics and develop hypotheses, it is useful to recognize that, in any selling job, several sources of role stressors are present. For example, Singh and Rhoads (1991) identify seven facets of role ambiguity alone. Likewise, a selling job can be characterized by various dimensions ranging from the degree of autonomy to the amount of feedback available. Including all or most of the sources of role stress and job characteristics in a single study poses significant challenges to the trade-offs between completeness and parsimony, especially because interaction terms increase exponentially. For this initial study, I address these trade-offs by focusing on sources that have received the most attention in the literature (to maintain comparability) and were reasonably well-grounded in theory (to maintain conceptual soundness). Therefore, I focus on three role stressors (role conflict, ambiguity, and overload) and four job characteristics (autonomy, feedback, variety, and participation) and examine their influences on five job outcomes (job performance, tension, satisfaction, turnover intentions, and organizational commitment).

Moreover, the underlying theories that posit inverted U-type and interactional hypotheses use an abstract conceptualization of role stress and job characteristics without specifying the role of their individual sources. Therefore, though I specify common hypotheses for the effects of various role stressors and job characteristic dimensions, I empirically examine the separate curvilinear and interactional influences of the individual role stressors and job characteristics. I begin the literature review with hypotheses for role stressors.

Influence of Role Stressors

Role stressors generally are conceptualized using three interrelated constructs: role conflict, role ambiguity, and role overload (Behrman and Perreault 1984; Belasco 1966; Kahn et al. 1964). Role conflict occurs when a salesperson believes that the expectations and demands of two or more members of his or her role set (e.g., boss and customer) are incompatible. Role ambiguity relates to the perceived lack of information a salesperson needs to perform his or her role adequately (e.g., effort instrumentality) and his or her uncertainty about the expectations of different role set members. Role overload occurs when the salesperson perceives that the cumulative role demands exceed his or her abilities and motivation to perform a task. The influence of different role stressors on job outcomes is supported conceptually by the role episode model of Kahn and colleagues (1964) who suggest that (1) boundary spanners (e.g., salespeople) interact with different role senders (e.g., customers, boss, coworkers) in many episodes to obtain information, direction, task demands, and assistance; (2) role sender demands and expectations take the form of perceived stressors when a salesperson believes that there is conflict (e.g., among demands), ambiguity (e.g., about expectations), or overload (e.g., of demands and expectations); (3) perceived stressors are influenced by a person’s psychological, dispositional, and sociological characteristics; and (4) persistent stressors are likely to overwhelm the person’s resources and thereby have a dysfunctional impact on his or her behavioral and psychological job outcomes (e.g., job performance, satisfaction).

Much empirical research has been conducted to examine the effects of different role stressors on a salesperson’s job outcomes. Conventionally, the linear influence of role stressors on performance, satisfaction, tension, turnover intentions, and organizational commitment has been examined (Behrman and Perreault 1984; Brown and Peterson 1993; Fisher and Gitelson 1983; Michaels, Day, and Joachim-
thaler 1987; Pruden and Reese 1972; Rhoads, Singh, and Goodell 1994; Singh 1993; Spector, Dwyer, and Jex 1988). The consensual view emerging from these findings (as is depicted in Figure 1, Part A) is that role stressors have significant dysfunctional (negative) effects on job performance, satisfaction, and organizational commitment and positive effects on job tension and turnover intentions. For example, Brown and Peterson (1993), in their recent meta-study, find correlations of -0.24, -0.36, -0.28, and 0.36 between role ambiguity and job performance, satisfaction, commitment, and propensity to leave, respectively. Similarly, the correlations between role conflict and job performance, satisfaction, commitment, and propensity to leave were -0.07, -0.33, -0.34, and 0.28, respectively. Although role overload is not studied as frequently as other role stressors, in general, the correlations between role overload and different job outcomes parallel those for role conflict and ambiguity. For example, Singh, Goolsby, and Rhoads (1994) report correlations of -0.14, -0.39, 0.25, and 0.09 between role overload and job satisfaction, organizational commitment, turnover intentions, and job performance, respectively. Therefore, there is general evidence that role stressors have significant, linear, dysfunctional relationships with critical job outcomes. Supporting evidence for this assertion emerges from a meta-analysis of studies outside marketing as well.

In contrast, the rival proposition of the curvilinear effects of role stressors on behavioral and psychological outcomes of salespeople has received little attention (see Figure 1, Part A).¹ This state of affairs is surprising because theories proposing such effects date back to the early 1900s (Yerkes and Dodson 1908), and there is general agreement among researchers that such effects are tenable. Specifically, as is depicted in Figure 1, researchers agree that extreme role stress invariably results in an erosion of job performance and job-related attitudes (i.e., distress; see Jamal 1984, 1985; Singh, Goolsby, and Rhoads 1994); however, moderate levels of role stress may increase performance because stress stimulates people to excel (eustress; see Selvy 1976). Role stressors therefore are hypothesized to be related either positively (e.g., stress acts as a stimulus) or negatively (e.g., stress is dysfunctional) to job outcomes, depending on the level of role stressors. The varying influence of role stressors is captured by an inverted U-curve and often referred to as the Yerkes-Dodson law.

Additional conceptual support for the assertion that role stressors have an inverted U-shaped relationship with job outcomes stems from activation theory (Scott 1966) and associated research (see Dienstbier 1989; Frankenhausser and Gardell 1976). According to activation theory, a person’s performance is at a suboptimal level at both low and high levels of chronic role stressors because performance is undermined by a lack of alertness or activation in the low stress condition and by overreactivation in the high stress condition. Moreover, Schaubroeck and Gansler (1993) note that both of these conditions are characterized by passive coping, which is driven by either a low level of motivation and resource activation or a lack of available resources because the person is overwhelmed with role demands. This passive coping interferes in the person’s adaptivity to environmental demands, further deteriorating his or her performance. However, performance is believed to be optimal at the intermediate role stress condition because the person is energized and activated to respond and cope actively with environmental demands but is not overwhelmed by them. Although researchers tend to focus on performance, similar theorizing

¹For the sake of conserving space, the figure displays the relationship for job performance only. Similar relationships occur for other job outcomes.

FIGURE 1

Competing Hypotheses of Linear and Curvilinear Effects of Role Stressors and Job Characteristics on the Job Performance of Salespeople

<table>
<thead>
<tr>
<th>Linear (Conventional) Effect</th>
<th>Inverted U Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Performance</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Role Stressors</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>

A: Job performance is at the optimal level when role stressors are (1) low for the linear hypothesis and (2) at a moderate level for the curvilinear model.

<table>
<thead>
<tr>
<th>Linear (Conventional) Effect</th>
<th>Inverted U Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Performance</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Job Characteristics</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>

B: Job performance is at the optimal level when job characteristics are (1) high for the linear hypothesis and (2) at a moderate level for the curvilinear model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
applies for job outcomes other than performance, such that
an inverted U-shaped relationship is tenable for the influence
of role stressors on job satisfaction and organizational
commitment, whereas a U-shaped influence is plausible for
turnover intentions and job tension.

Few published studies have examined empirically the
inverted U-type influence of role stressors. However, some
experimental research using student subjects and animal
studies provides support for U-type effects, especially for
the performance outcome (Dienstbier 1989). For example,
an intermediate level of activation is found to be associated
positively with various facets of the immune system's func-
tion, natural killer cell activity, and infusion of noradrena-
line in rats (Solomon, Kay, and Morley 1986), with opposite
effects for low and high activation levels. Field studies are
lacking in marketing literature.

Using the preceding as a basis, I posit two competing
hypotheses for empirical testing (Figure 1, Part A):2

H1: Each role stressor (i.e., role conflict, ambiguity, and over-
load) has a negative linear relationship with job perfor-
mance, satisfaction, and organizational commitment and a
positive linear relationship with job tension and turnover
intentions.

H2: Each role stressor (i.e., role conflict, ambiguity, and over-
load) has an inverted U-type relationship with job perfor-
mance, job satisfaction, and organizational commit-
ment and a U-type relationship with job tension and
turnover intentions.

Influence of Job Characteristics

Drawing from Hackman and Oldham's (1976) job character-
istics model (JCM) and House's (1971) path-goal theory
(PGT), marketers have studied the influence of four
JCM/PGT dimensions on the behavioral and psychological
outcomes of salespeople (Churchill, Ford, and Walker
1976): (1) feedback, the degree to which organizationally
mediated performance feedback is provided (Teas 1983); (2)
participation, the degree to which the salesperson can in-
fluence decisions about his or her job (Teas 1983); (3) variety,
the degree to which a job requires the salesperson to per-
form a wide range of tasks (Sims, Szilagyi, and Keller
1976); and (4) autonomy, the degree to which a job provides
the salesperson discretion in carrying out the work assign-
ment (Becherer, Morgan, and Richard 1982).

Conceptually, the rationale for the influence of the
JCM/PGT dimensions is based on notions of motivation
and means-end chains. Provision of a high level of autono-
momy, variety, and participation in a job leads to a high level
of intrinsic motivation because these characteristics en-
harmonize the experienced meaningfulness of work (Ilgen
and Hollenbeck 1991). A high level of feedback also provides
information about the results of work activities and the
efficacy of means for achieving desired ends goals. As such,
feedback provision clarifies the means-end connections (Il-
gen and Hollenbeck 1991), thereby providing motivational

2I am proposing a specific form of the curvilinear relationship
(i.e., U-type) not just any nonlinear relationship. Because the lin-
ear relationship is more parsimonious, I give higher priority to H1
in the empirical testing by entering the linear before the quadratic
terms and testing for any incremental contribution of the latter.

This motivational potential is believed to result in
higher levels of performance and psychological well-being
for the job incumbent.

The JCM/PGT dimensions generally are found to signif-
ically and linearly influence the behavioral and psycholog-
ical job outcomes of salespeople (see Figure 1, Part B). For
example, in their meta-analysis, Fried and Ferris (1987) re-
port correlations between autonomy and satisfaction and
performance of .34 and .14, respectively, and between feed-
back and satisfaction and performance of .29 and .15,
respectively. Brown and Peterson (1993) report that greater
amounts of feedback, variety, autonomy, and other positive
job characteristics are associated with greater job satisfac-
tion. Although no meta-study could be found that examines
the direct influence of job characteristics on tension,
turnover intentions, and commitment, individual studies re-
port significant relationships. Ramaswami, Agarwal, and
Bhargava (1993) report correlations between variety, auton-
omy, feedback, participation, and commitment of .14, .34,
.40, and .48, respectively. For tension and turnover inten-
tions, significant negative relationships have been reported.

However, few researchers have posited inverted U-type
effects for JCM/PGT dimensions (see Figure 1, Part B).
From a conceptual standpoint, such effects are plausible for
two reasons. First, there is a leveling-off effect as increasing
job characteristics no longer yield proportional increments
in the behavioral and psychological outcomes of salespeo-
ple. Second, there is an overstimulation effect, so that ex-
cessive levels of job characteristics, including feedback,
participation, variety, and autonomy, hinder rather than help
a person's performance (Champoux 1978, 1992; Schwab
and Cummings 1976). In turn, this overstimulation effect is
based on three interrelated propositions: (1) job characteris-
tics serve as a motivational force that stimulates a person to
increase his or her effort or expend energy in task perform-
ance; (2) each person has a characteristic level of stimula-
tion that represents an optimal point of motivation; and (3)
if the experienced stimulation level substantially exceeds
this characteristic level, the person becomes overwhelmed
and performance declines (Gardner and Cummings 1988;
Kahn and Byosiere 1992). These propositions parallel com-
mon beliefs that, at least for some people, too much autono-
momy is perceived as lack of direction, too much variety as
lack of focus, too much feedback as information overload,
and too much participation as burdensome. Consequently,
both high (or excessive) and low (or inadequate) levels of
job characteristics result in lowered performance. Interme-
mediate levels of job characteristics, which are closer to the
person's characteristic level, result in optimal performance.
This suggests an inverted U-shaped relationship between
job characteristics and performance, as is depicted in Figure
1, Part B. Similar rationale operates for other job outcomes.

There is growing and consistent empirical support for
the unconventional proposition of an inverted U-shaped rel-
ationship, but these studies do not involve marketing per-
sonnel (e.g., salespeople) and rarely have been cited in
marketing literature. For example, in a study of employees
from a research and development organization and two fed-
eral agencies, Champoux (1992) finds significant U-type ef-
fects of job characteristics on overall job satisfaction. In a
reanalysis of French, Caplan, and Harrison’s (1982) data, Edwards and Parry (1993) find that job complexity has distinct curvilinear effects on various job outcomes. In a more recent study, Xie and Johns (1995) find mixed results. The U-type effects were obtained for some job outcomes (e.g., exhaustion) but not for others (e.g., anxiety). Few studies have examined the curvilinear effects for commitment and turnover intentions.

Using the preceding as a basis, I test the following competing hypotheses for the influence of job characteristics:

\[H_1 \]: Each job characteristic (i.e., feedback, participation, variety, and autonomy) has a positive linear relationship with job performance, satisfaction, and commitment and a negative linear relationship with job tension and turnover intentions.

\[H_2 \]: Each job characteristic (i.e., feedback, participation, variety, and autonomy) has an inverted U-type relationship with job performance, job satisfaction, and organizational commitment and a U-shaped relationship with job tension and turnover intentions.

Interactional Influence of Role Stressors and Job Characteristics

Marketers have been less interested in studying the interactive effects of role stressors and job characteristics. Instead, as is indicated in Figure 2, the conventional approach involves testing for direct (i.e., main) effects (Cummings, Jackson, and Ostrom 1989; Michaels, Day, and Joachimsthaler 1987; Ramaswami, Agarwal, and Bhargava 1993; Singh 1993). This gap has been noted by Jackson and Schuler (1985), who describe this research as lacking in “theoretical coherence” and implore future researchers to conceptualize “task [job] characteristics as moderators of the relationship between role stressors and job outcomes” (p. 28).

The moderating or interactive effects can be supported by several theoretical frameworks. For example, in his job demands–decision latitude model, Karasek (1979) proposes that persons in roles with high job demands or stressors and low decision latitude or autonomy will experience the highest job tension and the lowest satisfaction and job performance. This connection exists because job characteristics facilitate coping with high levels of role stressors by (1) having the ability to change environmental factors that cause high levels of stressors (i.e., participation), (2) obtaining information that aids in dealing with stress-inducing situations (i.e., feedback), (3) using personal discretion in decision making (i.e., autonomy), and (4) seeking other tasks that reduce the centrality of stressful situations (i.e., variety). This view accords well with the resource-based rationale of the buffering hypothesis. According to the buffering hypothesis, individual and organizational resources buffer or reduce the dysfunctional effects of role stressors on various job outcomes (see Figure 2, Part A). The roots of the buffering hypothesis lie in the early work of Kahn and colleagues (1964), but the underlying rationale of coping resources and how it operates has been elaborated and theorized more recently (Latack, Kinicki, and Prussia 1995; Thoits 1995).

An alternative perspective draws on the overstimulation effect noted previously. According to this perspective, high levels of job characteristics fail to buffer the dysfunctional effects of high levels of role stressors. Instead, as is depicted in Figure 2, Part B, high levels of job characteristics serve

FIGURE 2

Competing Hypotheses of Linear and Interactional Effects of Role Stressors and Job Characteristics on the Job Performance of Salespeople

A: Under the buffering hypothesis, role stressors have (1) a negative relationship when job characteristics are at a “low” level and (2) no or positive relationship when job characteristics are at a “high” level. Role stressors and performance have a negative relationship regardless of job characteristics for the linear hypothesis.

B: Under the overstimulation hypothesis, role stressors have (1) a negative relationship when job characteristics are either “low” or “high” and (2) no relationship when job characteristics are at an “intermediate” level. Role stressors and performance have a negative relationship regardless of job characteristics for the linear hypothesis.

Striking a Balance / 73
to amplify the dysfunctional effects of role stressors because, beyond a characteristic level, job characteristics overstimulate the worker such that they appear as additional sources of stress (Xie and Johns 1995). If the person is exposed already to high levels of role stressors, these additional stress sources deplete any unused coping resources and overwhelm him or her. Thus, the dysfunctional effects of role stressors are enhanced, not buffered. Nevertheless, this theorizing recognizes that buffering effects would be most potent when both role stressors and job characteristics are at an intermediate level. At this level, the overstimulation effects likely are absent, and the job characteristics provide additional coping resources (e.g., by decision latitude) to buffer the dysfunctional effects of role stressors. Thus, an alternative hypothesis is that, though the interactional influence of job characteristics and role stressors is significant, its direction is such that the optimal level of performance occurs at the intermediate level of both variables. This hypothesis contrasts with the buffering hypothesis, in which the optimal level of performance occurs when both the role stressors and job characteristics are at a high level. Similar theorizing applies to other job outcomes.

The empirical evidence for interaction effects is mixed. Studies by Schuler (1980, 1977) indicate support for these effects for task variety and role stressors when job performance is the outcome variable and for participation and role stressors when satisfaction is the outcome variable. However, Spector (1987) and Tetrick and LaRocco (1987) fail to find evidence of interaction effects for affective outcomes (e.g., job satisfaction). Researchers have identified sampling as one possible reason for the lack of empirical evidence for interaction effects in general and specifically in the context of role stress (Xie and Johns 1995). The problem lies in the lack of heterogeneity in studies that use samples from a single division or organization. Without heterogeneity in perceived levels of job characteristics and role stressors, theoretical interaction effects are limited severely by the resulting restriction of range and are not detected empirically (Tosi 1992). Studies across organizations are recommended to overcome this problem (Xie and Johns 1995). Nevertheless, as was indicated previously, I could not trace a single study that had examined interaction effects using salespeople samples.

I posit the following hypothesis for the interaction of role stressors and job characteristics. Specific directional effects are not posited because of the conflicting theoretical perspectives.

H3: Job characteristics and role stressors have a significant interactional relationship with job performance, satisfaction, commitment, job tension, and turnover intentions.

Method

Sample

To overcome some of the limitations of previous research, a central concern in sampling was to balance my need to focus on salespeople (instead of any and all personnel) with that of obtaining sufficient heterogeneity to detect interaction effects (if present). There are some trade-offs involved because sampling personnel in different functional areas offers possibilities of greater heterogeneity, but it comes at the price of relevance for marketing. I resolved this trade-off by retaining the focus on salespeople but sampling across several different organizational settings, both large and small. Unfortunately, no single mailing list guarantees that the salespeople included are exposed to sufficiently different organizational, job, and role characteristics. Thus, to ensure this heterogeneity, I chose two independent sampling frames.

The first sample was selected from the list of U.S.-based members of the Association of Sales and Marketing Executives (SME), and the second sample was drawn from two divisions of a U.S.-based Fortune 500 industrial supplier firm. The SME has been in existence for more than 50 years and represents more than 10,000 members, most of whom occupy sales and marketing positions in organizations with fewer than 50 personnel. Approximately 150 (7.5%) selected members could not be contacted for participation because they either had moved or were no longer with the company, which resulted in an effective sample of 1850. In the second sample, the sampling frame was drawn from the two divisions of a multinational industrial corporation. The salespeople in these divisions are located all over the United States. This heterogeneity in geographic location was believed to be useful in the context of the present study. All 520 sales and marketing personnel in both divisions were included.

Data were collected using a mail questionnaire. Each participant was sent a prenotification card, a questionnaire packet, and a reminder card. Each questionnaire packet included four items: (1) a letter describing the rationale and purposes of the study, asking participation, and promising anonymity; (2) a letter from the relevant president or chief executive officer endorsing the study; (3) the questionnaire itself; and (4) a return postage-paid envelope.

Overall, 518 responses were received for analysis from the first sample, for a response rate of 28%, and 254 were received from the second sample, for a response rate of 48.8%. Of the responding sample, only those who indicated that their current job position was front-line selling were selected for the study. In all, 285 respondents from both studies identified themselves as salespeople and were retained for further analysis. Approximately 77% of the salespeople were men. The median age was 41 to 42 years. Most salespeople (75%) had a college or higher education, and the median experience with their current employer was six to seven years.

Measurements

Role stressors. Role conflict (eight items) and role ambiguity (seven items) were measured by scales from Rizzo, House, and Lirtzman (1970). Role overload was measured by a four-item scale from Beehr, Walsh, and Taber (1976). A five-point Likert scale was used, ranging from "strongly disagree" to "strongly agree." Each scale was analyzed using a maximum likelihood factor analysis procedure and evidenced consistent unidimensional properties, including a clear break after the first eigenvalue (scree plot), explained variances of 48% (role conflict) to 64% (role overload) of the total variance due to the first factor, and large significant loadings (> .30) on the first factor. Consistent with this, the
alpha reliabilities for the role conflict, ambiguity, and overload scales were .83, .86, and .84, respectively.

Job characteristics. Participation involved four items drawn from Inkson, Pugh, and Hickson’s (1970) centralization scale. Feedback was operationalized using a four-item scale drawn from the Job Diagnostic Survey (JDS) of Hackman and Oldham (1976) and adapted by Teas and colleagues (Teas 1983; Teas, Wacker, and Hughes 1979). Task variety was measured by three items drawn from Sims, Szilagyi, and Keller’s (1976) job characteristics inventory. Autonomy was assessed using three items from Hackman and Oldham’s (1976) JDS. In all cases, a five-point Likert scale was used, ranging from “strongly disagree” to “strongly agree.” When analyzed using a maximum likelihood factor analysis procedure, each scale evidenced consistent unidimensional properties, including a clear break after the first eigenvalue (scree plot), explained variances due to the first factor of 69% (autonomy) to 80% (participation) of the total variance, and large significant loadings (> .30) on the first factor. Cronbach’s alpha reliability estimates for participation, feedback, task variety, and autonomy were .92, .90, .84, and .89, respectively.

Outcome variables. Job performance was measured by a 6-item scale (adapted from Dubinsky and Mattson 1979). Salespeople rated themselves in comparison with their coworkers on a 5-point scale (ranging from “bottom 10%” to “top 10%”) on six different dimensions of performance (i.e., quantity, ability, potential, customer relations, time management, and planning and knowledge) (α = .74). Job tension was measured by a 7-item scale drawn from House and Rizzo (1972). A 5-point Likert scale was used, ranging from “always” to “never” (α = .85). Job satisfaction was operationalized as a 26-item scale adapted from Churchill, Ford, and Walker (1976). It assesses satisfaction with seven aspects of the job: pay, opportunities for advancement, recognition, company policies, boss, fellow workers, and customers. A 5-point Likert-type scale was used, ranging from “extremely dissatisfied” to “extremely satisfied” (α = .92). Organizational commitment was measured by a 4-item version of a scale by Porter and colleagues (1974). A 5-point Likert-type scale was used, ranging from “strongly disagree” to “strongly agree” (α = .83). Finally, turnover intentions was measured by a 3-item measure borrowed from Donnelly and Ivancevich (1975). A 5-point scale was used, ranging from “strongly disagree” to “strongly agree” (α = .94). Descriptive statistics and intercorrelations appear in Table 1.

Method of Analysis.

The proposed hypotheses were examined by introducing quadratic and multiplicative terms in a regression-like equation, as follows:

\[Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 Z + \beta_4 Z^2 + \beta_5 X Z + \epsilon, \]

where \(X \) represents a vector of role stressor constructs, \(Z \) the vector of job characteristics constructs, and \(Y \) a vector of job outcome variables. As such, the preceding equation, in matrix form, involves five separate equations corresponding to each of the five outcome variables. Note that the coefficient subscripts are in accord with the hypotheses. Therefore, the linear proposition for role stressors (\(H_1 \)) and job characteristics (\(H_2 \)) is supported if \(\beta_1 \) but not \(\beta_2 \) and \(\beta_1 \) but not \(\beta_4 \), respectively, are significant. The hypotheses for curvilinear effects of role stressors (\(H_2 \)) and job characteristics (\(H_4 \)) are supported if the corresponding coefficients, \(\beta_2 \) and \(\beta_4 \), are significant. The interactional hypothesis (\(H_3 \)) is supported if the coefficient \(\beta_5 \) is significant. In addition, an inverted U-shaped relationship is supported if (1) the coefficient for a linear term is positive (e.g., \(\beta_1 \)), (2) the coefficient for a quadratic term is negative (e.g., \(\beta_2 \)), and (3) both coefficients are significant (Cohen and Cohen 1983). The signs are reversed for a U-shaped relationship.

However, in estimating the preceding equations, I was sensitive to three methodological issues that might interfere with drawing valid inferences: (1) control over Type-I error rate, (2) measurement error, and (3) collinearity. With three role stressors and four job characteristics, the total number of independent variables is 26 (7 main effects + 7 quadratics + 12 two-way cross-interactions), which thus requires 130 separate t-tests to examine the proposed hypotheses (26 coefficients × 5 job outcomes). With so many tests, the probability of finding spurious significance is high if the error rate for each test is set at the conventional level of 5%; however, if a bonferroni correction is applied, the power might be so low that I risk disregarding significant effects. To overcome this problem, I used a hierarchical modeling approach in which the linear terms were entered first, followed by quadratic and interactional terms. Consistent with this, I followed a hierarchical testing approach whereby I examined the “additional” contribution of sequentially entered terms using subset comparisons relative to terms already in the model. This approach also is consistent with the competing models perspective because the linear effects are given priority, as they are partialled out of the quadratic and interactional terms. Finally, because the interactional and quadratic terms are likely to be highly collinear within themselves, they were entered sequentially, and only significant terms were retained for the next step in the hierarchical analysis.

Although most previous studies use regression analysis to examine curvilinear and interaction effects (Champoux 1992; Xie and Johns 1995), this approach is inappropriate because it ignores measurement error in both the independent and dependent variables. This can be problematic for several reasons. First, the amount of measurement error can be significant, ranging from 32% (Cote and Buckley 1988) to 50% (Schmidt and Hunter 1996). Second, regression coefficients likely are biased if the measurement error in dependent versus independent variables is significant and not accounted for (Busemeyer and Jones 1983; MacCallum and Mar 1995). Third, unaccounted measurement error in a system of equations is likely to hinder empirical detection of small but interesting effects. This is the case with quadratic and interaction terms. Although the contribution of these terms may be small, relative to the main effects, they are important from conceptual and applied perspectives. Because of this, Ping’s (1995) recently proposed approach for examining interactional and curvilinear influences that account for measurement error is used in this study (for an applica-
<table>
<thead>
<tr>
<th>Construct</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>RC</th>
<th>RA</th>
<th>RO</th>
<th>AU</th>
<th>FB</th>
<th>TV</th>
<th>PP</th>
<th>JP</th>
<th>JT</th>
<th>JS</th>
<th>OC</th>
<th>TI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role conflict (RC)</td>
<td>2.89</td>
<td>.76</td>
<td>-.83</td>
<td></td>
</tr>
<tr>
<td>Role ambiguity (RA)</td>
<td>2.51</td>
<td>.67</td>
<td>-.45</td>
<td>.86</td>
<td></td>
</tr>
<tr>
<td>Role overload (RO)</td>
<td>2.93</td>
<td>.90</td>
<td>.54</td>
<td>.22</td>
<td>.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autonomy (AU)</td>
<td>4.13</td>
<td>.83</td>
<td>-.36</td>
<td>-.42</td>
<td>-.15</td>
<td>.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback (FB)</td>
<td>3.30</td>
<td>.99</td>
<td>-.45</td>
<td>-.67</td>
<td>-.24</td>
<td>.41</td>
<td>.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task variety (TV)</td>
<td>4.48</td>
<td>.80</td>
<td>-.04</td>
<td>-.06</td>
<td>-.28</td>
<td>.27</td>
<td>.07</td>
<td>.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation (PP)</td>
<td>3.61</td>
<td>1.20</td>
<td>-.14</td>
<td>-.35</td>
<td>-.02</td>
<td>.28</td>
<td>.20</td>
<td>.19</td>
<td>.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job performance (JP)</td>
<td>4.48</td>
<td>.45</td>
<td>-.19</td>
<td>-.20</td>
<td>-.05</td>
<td>.25</td>
<td>.16</td>
<td>.17</td>
<td>.15</td>
<td>.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job tension (JT)</td>
<td>1.82</td>
<td>.59</td>
<td>-.47</td>
<td>.46</td>
<td>-.25</td>
<td>-.43</td>
<td>-.32</td>
<td>-.28</td>
<td>-.29</td>
<td>.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job satisfaction (JS)</td>
<td>3.67</td>
<td>.60</td>
<td>-.55</td>
<td>-.47</td>
<td>-.30</td>
<td>.48</td>
<td>.52</td>
<td>.20</td>
<td>.38</td>
<td>.18</td>
<td>-.54</td>
<td>.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organizational commitment (OC)</td>
<td>3.62</td>
<td>.73</td>
<td>-.40</td>
<td>-.48</td>
<td>-.09</td>
<td>.39</td>
<td>.43</td>
<td>.22</td>
<td>.43</td>
<td>.26</td>
<td>-.48</td>
<td>.60</td>
<td>.83</td>
<td></td>
</tr>
<tr>
<td>Turnover intentions (TI)</td>
<td>2.28</td>
<td>1.20</td>
<td>.44</td>
<td>.41</td>
<td>.22</td>
<td>-.35</td>
<td>-.44</td>
<td>-.22</td>
<td>-.31</td>
<td>-.10</td>
<td>.56</td>
<td>-.54</td>
<td>-.60</td>
<td>.94</td>
</tr>
</tbody>
</table>

The alpha reliabilities are on the diagonal.
tion, see Lusch and Brown (1996). All models were estimated using the EQS software (Bentler 1995). Fourth, a concern for collinearity is likely to arise because the quadratic and interaction terms are derived through mathematical manipulations of the modeled variables. This collinearity is likely to increase Type-II error rates (i.e., accepting the null when it should be rejected) because of inflated estimates of standard errors and, consequently, interfere with obtaining valid tests of posited hypotheses (Mason and Perreault 1991). To address this concern, a “mean-centering” approach was used, in which the individual measures were mean centered before the interaction and quadratic terms were developed. Moreover, the hierarchical approach aids in handling collinearity problems because it examines the additional contribution of different sets of variables (e.g., quadratics) through the change in χ^2 rather than relying solely on tests of individual coefficients. This ensures some control over Type-II error rates.

Results

Measurement Characteristics

Table 1 reveals that the reliabilities for role stressors, job characteristics, and other job outcome constructs exceed .70. The three role stressors are correlated positively, as are the four job characteristics. However, role stressors and job characteristics are correlated negatively and, in most cases, significantly. Taken together, this suggests that job characteristics and role stressors are distinct aspects of salespeople’s work environments and evidence a high level of systematic variance and discriminant validity. In addition, these components have significant relationships with various job outcomes and in a direction consistent with previous theory and research. For example, role stressors have a negative relationship with job satisfaction, performance, and commitment and a positive correlation with tenure and turnover intentions (all significant at $p = .05$, except for role overload’s effect on job performance and commitment). Job characteristics have a positive relationship with job satisfaction, performance, and commitment and a negative correlation with tenure and turnover intentions (all significant at $p = .05$). Overall, these significant relationships indicate the nomological validity of the role stressors and job characteristics constructs. Finally, the intercorrelations among the job outcomes are also consistent with theoretical expectations. Turnover intentions is correlated positively and significantly with job tension and related negatively to job satisfaction, performance, and commitment (all significant at $p = .05$, except performance). The same results hold for other job outcomes. This suggests that the various measures of job outcomes evidence nomological validity.

To further substantiate the measurement properties of focal constructs, a confirmatory factor analysis was run with a model that included three role stressors, four job characteristics, and four job outcomes as the latent constructs. Because of parsimony and statistical considerations, each latent construct was identified with two observed indicators that were obtained by summing up the respective individual measures (e.g., using odd/even split). This model produced the following fit statistics: $\chi^2 = 248.2$, degrees of freedom (df) = 186, $p = .002$, non-normed fit index (NNFI) = .99, comparative fit index (CFI) = .99, average off-diagonal standardized residual (AOSR) = .02, and root mean square error of approximation (RMSEA) = .032 (90% confidence interval [CI] of .012–.04). Although the χ^2 statistic is significant, other indicators of approximate (e.g., RMSEA) and relative model fit (e.g., CFI) suggest that the hypothesized measurement model fits the data reasonably well. In addition, without exception, the estimated loadings are significant, at $p = .01$, and large, with values ranging from .75 to .99 (all t-values > 10), which indicates that the individual indicators have substantial systematic variance attributed to the underlying latent construct. This offers further evidence of the convergent validity of the constructs. Finally, the estimated correlations among the latent constructs (these are similar to Table 1 but corrected for measurement error) are in the theoretically expected direction and range from 0 (between role conflict and performance) to −.68 (between role ambiguity and feedback). This suggests that the focal constructs possess discriminant and nomological validity.

Test of Hypotheses

Initially, several models were estimated by sequentially entering the linear, quadratic, and interaction terms for each job outcome using Ping’s (1995) procedure, which accounts for measurement error. When the significant terms were identified, a final model was estimated by restricting the included independent variables. Table 2 summarizes the results obtained.

Job performance. The sequential analysis indicated that the quadratic terms were nonsignificant for both role stressors ($\chi^2 = 3.94$, df = 3, $p = .27$) and job characteristics ($\chi^2 = .55$, df = 4, $p = .97$). However, in each case, the linear terms contributed significantly to the prediction of job performance ($p < .01$). This supports H_1 and H_2 but not H_3 and H_4.

3 As a complementary analysis, I ran a multiple regression with role stressors and job characteristics (direct entry method) using a residual centering approach (Lance 1988) that involved (1) standardizing the first order variables, (2) developing the interaction and quadratic terms, (3) extracting residuals for interaction and quadratic terms by regressing them against their corresponding linear terms, and (4) entering the linear terms and extracted residuals for quadratics and interactions in the hypothesized regression model (see equation). This approach also is consistent with the competing models perspective because the linear effects are given priority as they are partially out of the quadratic and interactional terms. Although the coefficients obtained were biased, due to measurement error, the specific terms found to be significant were similar to those resulting from the latent variable structural equations analyses. Also, note that in Ping’s (1995) approach, each latent construct is specified by a single composite indicator (e.g., summated index of its measures) and with its loading identified by its reliability (e.g., alpha reliability estimate).

4 For this model, the elliptically reweighted least squares $\chi^2 = 189.9$, df = 186, which is nonsignificant with $p = .40$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
The inclusion of interactional terms produced significant results for autonomy ($\chi^2 = 16.7, df = 3, p < .001$) and task variety ($\chi^2 = 8.4, df = 3, p < .04$), which offers support for H3. On the basis of these results, a final model was estimated that included restricted linear and interactional terms only.

The results from the estimated final model of job performance (see Table 2) indicate a good fit to the data ($\chi^2 = 98.9, df = 94, p = .35$, NNFI = .99, CFI = .99, AOSR = .02, and RMSEA = .01) and explain approximately 25% of the variance in the job performance of salespeople. In terms of linear effects, task variety is the only job characteristic that had a significant functional influence on performance ($\beta = .21, p < .01$). In addition, role conflict ($\beta = -.23, p < .05$) and ambiguity ($\beta = -.27, p < .05$) have significant dysfunctional effects. Two specific interactional influences appear significant, including the interactive positive influence of role conflict and task variety ($\beta = .24, p < .05$) and the negative influence due to role ambiguity and autonomy ($\beta = -.28, p < .01$). In other words, task variety appears to buffer the effects of role conflict on performance, but autonomy tends to enhance the dysfunctional effects of role ambiguity. Prior research has not reported such effects (see Figure 3).

TABLE 2

Estimated Path Coefficients and Goodness-of-Fit Statistics for a First-Order Model with Linear, Quadratic, and Interactional Influences

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Performance</th>
<th>Tension</th>
<th>Turnover</th>
<th>Satisfaction</th>
<th>Commitment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role conflict (RC)</td>
<td>-.23 (.20)</td>
<td>.35 (3.8)</td>
<td>.47 (3.4)</td>
<td>-.42 (4.8)</td>
<td>-.38 (3.7)</td>
</tr>
<tr>
<td>Role ambiguity (RA)</td>
<td>-.27 (.20)</td>
<td>.05 (46)</td>
<td>.20 (1.1)</td>
<td>.04 (43)</td>
<td>-.15 (.13)</td>
</tr>
<tr>
<td>Role overload (RO)</td>
<td>.08 (.85)</td>
<td>.01 (.01)</td>
<td>.00 (.05)</td>
<td>.03 (.47)</td>
<td>.24 (3.0)</td>
</tr>
<tr>
<td>Autonomy (AU)</td>
<td>.08 (.91)</td>
<td>-.10 (-1.2)</td>
<td>-.13 (-1.5)</td>
<td>.17 (3.1)</td>
<td>.09 (1.4)</td>
</tr>
<tr>
<td>Feedback (FB)</td>
<td>.15 (1.4)</td>
<td>-.16 (-2.0)</td>
<td>-.22 (-2.6)</td>
<td>-.28 (3.6)</td>
<td>.14 (1.5)</td>
</tr>
<tr>
<td>Task variety (TV)</td>
<td>.21 (3.02)</td>
<td>-.25 (-4.6)</td>
<td>-.21 (-3.0)</td>
<td>.09 (1.8)</td>
<td>.14 (2.6)</td>
</tr>
<tr>
<td>Participation (PP)</td>
<td>.02 (.20)</td>
<td>-.10 (-1.8)</td>
<td>-.22 (-2.9)</td>
<td>.23 (4.5)</td>
<td>.23 (3.9)</td>
</tr>
<tr>
<td>RC2</td>
<td></td>
<td>.10 (1.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA2</td>
<td></td>
<td>.22 (2.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RO2</td>
<td></td>
<td>.07 (-.97)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU2</td>
<td></td>
<td>.01 (.21)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB2</td>
<td></td>
<td>.10 (1.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TV2</td>
<td></td>
<td>.09 (1.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP2</td>
<td></td>
<td>.11 (1.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC*AU</td>
<td>.08 (.32)</td>
<td>-.01 (-0.1)</td>
<td>-.20 (-1.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC*FB</td>
<td>.04 (.27)</td>
<td>-.12 (-2.0)</td>
<td>-.03 (-.33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC*TV</td>
<td>.24 (2.26)</td>
<td>.02 (.12)</td>
<td>-.24 (-.98)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC*PP</td>
<td>-.12 (-.69)</td>
<td>.09 (1.8)</td>
<td>-.03 (-.24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA*AU</td>
<td>-.28 (-3.2)</td>
<td>.11 (1.1)</td>
<td>-.15 (-1.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA*FB</td>
<td>-.10 (-1.0)</td>
<td>.18 (2.0)</td>
<td>-.09 (-.96)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA*TV</td>
<td>.02 (.24)</td>
<td>-.04 (-.90)</td>
<td>.28 (2.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA*PP</td>
<td>.00 (.09)</td>
<td>-.09 (-1.1)</td>
<td>.15 (1.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RO*AU</td>
<td>-.07 (-.65)</td>
<td>.02 (.05)</td>
<td>-.17 (-1.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RO*FB</td>
<td>-.01 (-.13)</td>
<td>-.04 (-.50)</td>
<td>.13 (1.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RO*TV</td>
<td>-.05 (-.58)</td>
<td>.01 (.06)</td>
<td>-.27 (-2.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RO*PP</td>
<td>-.14 (-1.5)</td>
<td>.02 (.07)</td>
<td>.08 (.86)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Goodness-of-Fit Statistics

- χ^2 (df) 98.9 (94)
- 287.1 (262)
- 93.2 (94)
- 76.1 (76)
- 77.1 (76)
- p-value .35
- .15
- .50
- .47
- .44
- NFI .97
- .97
- .97
- .98
- .98
- NNFI .99
- .99
- .99
- .99
- .99
- CFI .99
- .99
- .99
- .99
- .99
- AOSR .02
- .01
- .02
- .01
- .01
- RMSEA (90% CI) .01 (.00–.03)
- .02 (.00–.03)
- .01 (.00–.03)
- .01 (.00–.04)
- .01 (.00–.04)
- R^2 .25
- .48
- .45
- .60
- .47

a Initially, the predictors were entered sequentially in the following order: (1) linear, (2) quadratic, and (3) interaction terms using subset of variables to control for multicollinearity. The significant coefficients reported here are based on a restricted model that included the significant terms only. For completeness, nonsignificant coefficients are reported from prior sequential analysis.

b The goodness-of-fit statistics and the significant coefficients are based on elliptically reweighted least squares estimation of a trimmed model that included terms found to be significant in the preceding sequential analysis.

c Estimated coefficients with t-values > 2 are in bold.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIGURE 3
Partial Plots for the Interactional Effects of Task Variety/Autonomy and Role Stressors on the Job Performance of Salespeople

A: Task variety buffers the effect of role conflict on job performance. As such, salespeople face less dysfunctional consequences of role conflict when task variety is high.

B: Autonomy enhances the dysfunctional effect of role ambiguity on job performance. As such, the negative influence of role ambiguity is enhanced when autonomy is high.

Job tension. The quadratic terms were significant for role stressors ($\chi^2 = 10.2$, df = 3, $p = .01$) but not for job characteristics ($\chi^2 = 7.95$, df = 4, $p = .10$). In addition, for each case, the linear terms contributed significantly to the prediction of job tension ($p < .01$). This supports H_2 and H_3 but not H_1 and H_4. The inclusion of interactional terms also produced significant results but mainly for feedback ($\chi^2 = 8.58$, df = 3, $p < .04$). This offers some support for H_5. On the basis of these results, a final model, including linear effects and a restricted set of quadratic and interactional terms, was estimated.

The estimated final model provides a good fit to the data ($\chi^2 = 287.1$, df = 262, $p = .15$, NNFI = .99, CFI = .99, AOSR = .01, and RMSEA = .02) and explains more than 48% of the variance in job tension of salespeople. Four linear effects are significant, including the positive influence of role conflict ($\beta = .35$, $p < .01$) and negative effects of feedback ($\beta = -.16$, $p < .05$), task variety ($\beta = -.25$, $p < .01$), and participation ($\beta = -.10$, $p < .05$). Moreover, the quadratic coefficient for role ambiguity ($\beta = .22$, $p < .01$) is positive and significant. Finally, two specific interactional influences involving feedback are significant: positive effects emerge for the interaction between role ambiguity and feedback ($\beta = .18$, $p < .05$), whereas negative influences are tenuous for the interactive effects of role conflict and feedback ($\beta = -.12$, $p < .05$). This suggests that, though feedback appears to enhance the dysfunctional effects of role ambiguity (overstimulation effect), it buffers the negative effects of role conflict (buffering effect). Previous research has failed to uncover these curvilinear and interactional effects (see Figure 4).

Turnover intentions. The sequential analysis indicated that the quadratic terms were nonsignificant for both role stressors ($\chi^2 = 4.36$, df = 3, $p = .23$) and job characteristics ($\chi^2 = 1.29$, df = 4, $p = .86$). However, the linear terms contributed significantly to the prediction of turnover intentions ($p < .01$). This supports H_1 and H_3 but not H_2 and H_4. The inclusion of interactional terms produced significant results for task variety only ($\chi^2 = 15.9$, df = 3, $p < .01$). This offers some support for H_5. A final model was estimated that included restricted linear and interactional terms only.

The estimated final model for turnover intentions (see Table 2) indicates a good fit to the data ($\chi^2 = 93.2$, df = 94, $p = .50$, NNFI = .99, CFI = .99, AOSR = .02, and RMSEA = .01) and explains approximately 45% of the variance in turnover intentions of salespeople. In terms of linear effects, role conflict is the only role stressor that had a significant dysfunctional influence on turnover ($\beta = .47$, $p < .01$). In contrast, several job characteristics, including feedback ($\beta = -.22$, $p < .05$), task variety ($\beta = -.21$, $p < .05$), and participation ($\beta = -.22$, $p < .05$), have significant functional effects by reducing turnover intentions. Two specific interactional influences appear significant, including the interactive positive influence of role ambiguity and task variety ($\beta = .28$, $p < .05$) and the negative influence due to role overload and task variety ($\beta = -.27$, $p < .05$). In other words, task variety appears to buffer the effects of role overload on turnover intentions and, at the same time, tends to enhance the dysfunctional effects of role ambiguity. Prior research has not reported such effects.

Job satisfaction and commitment. Consistent results were obtained for the influence of role stressors and job characteristics on job satisfaction and organizational commitment of salespeople.\(^5\) In each case, the hierarchical test-

\(^5\)This consistency reaffirms findings from recent research (e.g., Singh, Goolsby, and Rhoads 1994) in that satisfaction and commitment represent similar psychological dispositions and probably act as reflective indicators of a single, higher order construct. Singh, Goolsby, and Rhoads refer to this higher order construct as "psychological job outcomes."
FIGURE 4
Partial Plots for the Interactional Effects of Feedback and Role Stressors on the Job Tension of Salespeople

A: Feedback buffers the effect of role conflict on job tension. As such, salespeople face less dysfunctional consequences of role conflict when feedback is high.

B: Feedback enhances the dysfunctional effect of role ambiguity on job tension. This overstimulation effect is due to significant interactional and quadratic influences. The negative effect of role ambiguity is enhanced when both feedback and role ambiguity are high. Note that when role ambiguity is low, its dysfunctional effect is enhanced for low levels of feedback.

The influence of role stressors and job characteristics reveals that the coefficients for (1) quadratic terms are invariably nonsignificant, (2) interactional terms are also consistently nonsignificant, and (3) only the linear terms are significant. Because neither the quadratic nor the interactional coefficients are significant, H2, H4, and H5 are not supported.

Table 2 summarizes the estimated coefficients obtained for the preceding job outcomes. In each case, the final model fits the data well, with χ^2 values of 76.1 for job satisfaction and 77.1 for commitment (df = 76, $p < .05$). In addition, the various fit indices are greater than .90, and the residual indices are less than .05. Finally, the model explains a significant amount of variance, with R^2 values ranging from .47 (commitment) to .60 (job satisfaction).

However, there are some differences in estimated coefficients across the preceding job outcomes. For job satisfaction, role conflict is the only role stressor that has a significant dysfunctional influence ($\beta = -.42$, $p < .01$). In contrast, with the exception of task variety, each of the job characteristics has a significant, positive effect, with coefficients ranging from .17 (autonomy, $p < .01$) to .28 (feedback, $p < .01$). Thus, increasing the provision of feedback and/or autonomy and enhancing salespeople’s participation in decision making appears to increase the job satisfaction of salespeople substantially.

For organizational commitment, role conflict has a significant and substantial influence ($\beta = -.38$, $p < .01$). Also, the effect of role overload is significant but in a direction opposite that predicted by theory ($\beta = .24$, $p < .01$). Therefore, salespeople who experience high levels of role overload tend to be more committed to their organization. Finally, task variety and participation appear to enhance commitment significantly ($\beta = .14$, $p < .05$ and $\beta = .23$, $p < .01$, respectively).

Discussion

Several limitations of this research must be recognized in a balanced discussion of its findings. First, because this study examines theoretical hypotheses that have remained largely untested in previous research, future replications and extensions are necessary to circumscribe the generalizability and applicability of findings reported here. Such future studies should involve sampling from diverse organizational contexts, to obtain greater variability, and other boundary-spanning roles relevant to marketing (e.g., customer service representatives). Second, because a self-report method was used, it is possible that the explained variances are increased because of common method variance. However, it is less likely that the differential pattern of results obtained is solely due to common method variance, because such variance tends to obfuscate differential relationships. Third, this research fails to take into account potential moderators of the relationships among role stressors, job characteristics, and job outcomes. Potential moderators include personality (e.g., locus of control, tolerance for ambiguity), supervisory/leadership variables (e.g., consideration), and contextual characteristics (e.g., type of customers served, climate). Fourth, it is likely that some bias is introduced by the methodological approach to balance degrees of freedom with model complexity, which is specifically due to analyzing each job outcome separately (e.g., ignoring intercorrelations) and deleting nonsignificant terms midstep (e.g.,

80 / Journal of Marketing, July 1998

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
quadratics). Fifth, though it provides needed heterogeneity, sampling across a wide range of small and large firms introduces noise, due to uncontrolled or unmeasured variability in contextual or industry factors. Alternative designs might include sampling more contextually restrictive firms (e.g., one or two very large firms) but with significant heterogeneity in selling tasks (e.g., salespeople in different strategic business units, geographical areas). Future researchers could exploit these possibilities.

Nevertheless, the results provide new insights that extend conventional wisdom on the influence of role stressors and job characteristics on the critical job outcomes of salespeople. For the sake of discussion, I organize these insights into three areas: (1) support for conventional effects (i.e., linear), (2) support for unconventional influences (i.e., curvilinear and interactional), and (3) inherent trade-offs in the effects of job characteristics across job outcomes.

Conventional Effects

My study reaffirms the conventional wisdom that role stressors have dysfunctional and job characteristics have functional effects on job outcomes and that these effects are linear and independent (i.e., main effects only). However, this reaffirmation is not unqualified. Rather, it is limited to two job outcomes: job satisfaction and organizational commitment. Taken together with previous research and meta-analyses, I find that, to increase the satisfaction and commitment of salespeople, sales managers have several choices. They can (1) decrease the level of role stressors, (2) increase the provision of job characteristics, or (3) do both. These suggestions should not be taken to mean that ceiling (when additional levels of job characteristics fail to yield commensurate functional effects) and floor (when additional levels of role stressors fail to yield commensurate dysfunctional effects) influences are implausible. Instead, it appears that, within the range of role stressors and job characteristics experienced by this relatively diverse sample, mainly linear effects occur. Outside this range, ceiling and floor effects might be supported.

The estimated coefficients provide further insights into these conventional effects. Role conflict is a critical factor with consistent dysfunctional influences (see Table 2). The centrality of role conflict also has been noted by other researchers (e.g., Behrman and Perreault 1984) on the grounds that conflict is inherent in boundary-spanning roles (e.g., salespeople) and is a precursor to other forms of role stress (e.g., role ambiguity) and dysfunctional outcomes (e.g., satisfaction). Similarly, participation has consistent functional effects (see Table 2), in support of the view that involvement in decision making enhances feelings of control, which results in positive psychological job outcomes. Moreover, task variety builds commitment, whereas feedback amplifies job satisfaction. This supports JCM predictions that task variety holds motivational potential (hence, commitment) through experiences meaningfulness of work and that feedback serves to enhance satisfaction through its instrumental function (e.g., knowledge of results). More focused effects are obtained for autonomy because its functional influence is limited to satisfaction. Role overload has a significant positive influence on commitment (Table 2), though the bivariate correlation is nonsignificant (see Table 1), which indicates suppressor effects.

Unconventional Influences

Job performance. This study finds support for some unconventional influences as well. The results in Table 2 identify the specific interactional influences that contribute to the unconventional effects for job performance. The partial plots corresponding to the significant interaction terms—invoking role conflict and task variety and role ambiguity and autonomy—appear in Figure 3.

A contrasting pattern of results is evident in Figure 3. Task variety appears to buffer the dysfunctional effects of role conflict. In other words, provision of task variety helps salespeople cope with perceived role conflict, probably because variety holds distraction potential. Such mechanisms are likened to "escapist" coping strategies (cf. Thoits 1995), though task variety formalizes this strategy in a productive work environment. The results therefore support the explanation rooted in the buffering hypothesis as far as the influence of task variety and role conflict is concerned.

In contrast, autonomy appears to overstimulate salespeople who are experiencing a high level of role ambiguity, which results in adverse consequences. Plausible reasons for this finding are rooted in the eustress hypothesis and in research on decision making under uncertainty. That is, in the absence of additional stimulating effects of job characteristics, high levels of role ambiguity might have intrinsic motivation potential to energize the salesperson to put in additional efforts and focus on the task (e.g., because of its learning possibilities). This presumes, however, that salespeople have and/or can seek ways of effective coping; without such coping, these high levels of role ambiguity are likely to result in burnout (Singh, Goolsby, and Rhoads 1994). This intrinsic motivation potential of role ambiguity appears to parallel the well-recognized role of job characteristics in generating (intrinsically) motivation force to perform at a high level. In addition, the provision of autonomy implies additional decision-making demands that, in an uncertain environment, are likely to be perceived as stressful. Coping with these demands requires additional resources on the part of the worker. After a point, performance suffers. Viewed from this perspective, it appears that the eustress hypothesis is tenable but conditioned on the level of job characteristics such as autonomy. Although this warrants further conceptualization and examination, it seems misguided to combat role ambiguity with greater autonomy and inappropriate to provide additional autonomy without considering the nature of the role stress environment.

Job tension. Additional support for the unconventional effects emerges from the results for job tension. The significant quadratic (role ambiguity) and interactional effects (feedback; see Table 2) are plotted in Figure 4 to provide

Partial plots are based on partial derivatives of the dependent variable, relative to the focal variable. As such, the partial plot for role conflict would be based on δ job performance/δ role conflict, which equals (−.23 + .24 task variety), if other nonsignificant terms are ignored for clarity. Aiken and West (1991) refer to these as "conditional" plots.
FIGURE 5
Partial Plots for the Interactional Effects of Task Variety and Role Stressors on the Turnover Intentions of Salespeople

A: Task variety enhances the dysfunctional effect of role ambiguity on turnover intentions. Thus, salespeople facing high role ambiguity are overstimulated by increasing task variety, which results in a higher tendency to quit.

B: Task variety buffers the dysfunctional effect of role overload on turnover intentions. Thus, task variety helps salespeople cope with high role overload, which results in a higher tendency to quit.

deep into the underlying processes. Specifically, the unconventional effects are tied closely to the role of feedback, which is the availability of information about a person's performance from the boss as well as from the job. Figure 4 reveals that this feedback has disparate effects for role conflict and ambiguity. For salespeople facing role conflict, feedback helps by buffering the adverse effects of conflict on job tension, such that salespeople exposed to high levels of feedback appear to be unaffected by increasing levels of role conflict. In contrast, salespeople with low feedback evince significant dysfunctional effects with increasing role conflict. However, feedback has opposite effects for role ambiguity. When salespeople are provided a high level of feedback, they are likely to show greater adverse consequences with increasing role ambiguity. In other words, feedback amplifies the negative consequences of high levels of role ambiguity, probably due to overstimulation. Providing low levels of feedback to salespeople who face high levels of role ambiguity appears beneficial. A possible rationale for this effect relies on the informational, not instrumental, content of feedback. That is, feedback provided to the salesperson holds little instrumental value in terms of helping the salesperson deal with role stress. Rather, its role is limited purely to information provision. Thus, when a salesperson is facing considerable uncertainty in executing role tasks and expectations, high informational feedback pertaining to (poor) performance might interfere in his or her learning processes and problem-solving abilities (e.g., "informational paralysis"; cf. Balzer, Doherty, and O'Connor 1989; Kluger and DeNisi 1996), thereby increasing tension. In such situations, there is virtue in low feedback. More research is needed to examine these disparate influences of feedback carefully.

Turnover intentions. The unconventional influences on turnover intentions of salespeople are focused on the interactional effects of task variety. These effects are plotted in Figure 5 as partial plots of role ambiguity and role overload for different levels of task variety. Figure 5 reveals that task variety has an overstimulation potential for role ambiguity. Salespeople facing high levels of role ambiguity are less likely to view increasing task variety positively. Rather, the intentions for turnover for such salespeople are likely to be enhanced. A possible reason is that variety, in and of itself, does not have instrumental value to salespeople to help cope with role stress. That is, task variety offers no additional resources that salespeople can use to deal with role ambiguity. Instead, as was noted previously, task variety probably works because of its distraction potential. Distracting the efforts and attention of salespeople who face significant role ambiguity amplifies, not buffers, the adverse consequences of role stress, which results in increased tendencies to quit.

In contrast, task variety has buffering potential for role overload (see Figure 5). When role overload among salespeople is high, task variety appears to buffer its dysfunctional influence on turnover intentions. Although this is speculative, I reason that this buffering effect is not because of any additional coping resources that task variety offers to overloaded salespeople, but rather, consistent with the preceding overstimulation effect, that task variety provides distraction effects that render role overload more bearable. This results in reduced turnover intentions. Conversely, when overloaded salespeople are restricted to tasks that lack variety, it appears that boredom, combined with heavy role demands, amplifies the adverse consequences of role overload.
for the turnover intentions of salespeople. More research is needed to understand the processes underlying the overstimulation and buffering effects observed for task variety.

Inherent Trade-offs

Taken together, my findings yield evidence of inherent, and possibly inevitable, trade-offs. These trade-offs center on the influence of job characteristics. In particular, the positive influence of job characteristics on the performance, tension, and turnover intentions of salespeople is constrained by the overstimulation effect and conditional on the level of role stressors. Insofar as behavioral performance, psychological tension, and tendency to quit are concerned, the potential for overstimulation effectively constrains the functional level of job characteristics to an intermediate or low level, and these constraints become more severe as the magnitude of role stressors increases. In contrast, their positive influence on the satisfaction and commitment of salespeople appears to be unconstrained and unconditional. The latter finding suggests that the satisfaction and commitment of salespeople can be enhanced by increasing the autonomy, feedback, variety, and participation in their jobs. This simplistic guideline is reflective of much published research to date, including several meta-analysis. However, my findings of unconventional effects suggest that, in some common conditions, the cost of increasing the level of job characteristics is likely to be paid with the coins of reduced performance, increased levels of job tension, and greater intentions to quit.

Clear and compelling evidence of these costs is forthcoming from the results. For example, increasing autonomy and feedback increases satisfaction and reduces turnover intentions but, at the same time, can overstimulate the salesperson to decrease performance significantly (see Figure 3) and increase tension, respectively (see Figure 4). The provision of greater task variety helps increase commitment and performance and reduce the psychological tension of salespeople, but beyond an intermediate level, variety amplifies the dysfunctional effects of role ambiguity, which results in an increased tendency to quit (see Figure 5). Task variety also acts to buffer the adverse effects of role overload (for turnover intentions, see Figure 5) and role conflict (for performance, see Figure 3). Job characteristics therefore are double-edged swords that demand caution in exploiting their promised functional effects. Viewing job design questions from the perspective of the trade-offs between increasing satisfaction and commitment, versus increasing performance and reducing job tension and turnover tendencies of salespeople, provides a new perspective on old questions. Unquestionably, these contrasting views hold significant implications for sales and other managers, as I discuss subsequently. Although the generalizability of the study’s findings to other contexts requires further study, this notion of inherent trade-offs warrants the serious attention of researchers seeking to join the conceptual approaches and frameworks of job characteristics and role theory (Ilgen and Hollenbeck 1991).

Moreover, the results suggest contrasting effects for different role stressors. Employees in sales environments characterized by high levels of role ambiguity are more likely to be overstimulated by the additional provision of job characteristics. This is because increased autonomy, feedback, and task variety appear to amplify the dysfunctional effects of role ambiguity on performance (Figure 3), tension (Figure 4), and turnover intentions (Figure 5). In contrast, sales roles involving higher levels of role conflict and/or overload are likely to be buffered by increasing job characteristics. Task variety and feedback tend to buffer or reduce the adverse consequences of role conflict for performance (Figure 3) and tension (Figure 4). In addition, task variety buffers the negative effects of role overload on turnover intentions (Figure 5). These contrasting effects argue against aggregation of different sources of role stress (as in Singh, Goolshby, and Rhoads 1994) and for more focused strategies for handling individual role stressors.

Managerial Implications and Concluding Notes

This article aims to explore some theoretically plausible but (largely) empirically untested propositions for the curvilinear and interactional relationships among job characteristics, role stressors, and critical job outcomes. My underlying motivation has been that, if such unconventional possibilities are supported, they hold significant implications for researchers, in understanding boundary-spanning jobs and roles, and for managers, in designing job and role environments that promote psychological well-being and performance effectiveness. Moreover, these implications either are at odds with or temper conventional wisdom about the influence of job characteristics and role stressors on the job outcomes of salespeople. Although I recognize that a single study does not knowledge make, the empirical support obtained for some of the propositions opens the window to new perspectives and possibilities and cautions against an uncritical embracing of conventional wisdom.

In particular, for a sales manager grappling with different options to help salespeople deal with high levels of role stress, the results suggest strategies that are somewhat out of step with conventional wisdom. For the three strategies listed in the introduction, the results suggest that

- Increasing role clarity by reducing role conflict and ambiguity is likely to help salespeople obtain a higher level of job performance, satisfaction, and organizational commitment and a lower level of turnover intentions and job tension (in accordance with conventional wisdom). However, beyond a certain point (i.e., the intermediate level), further decreases in role ambiguity through detailed procedural guidelines are likely to increase job tension (see Figure 4) and turnover intentions (see Figure 5), especially if the task environment has low feedback and task variety. Thus, though the sales manager is encouraged to help decrease salesperson role stress, he or she is cautioned not to overdo it.

- Increasing job characteristics, such as variety and participation, that are less likely to reduce role stress directly might be useful to pursue (tempers conventional wisdom). Both variety and participation have significant, direct positive effects on a range of job outcomes (see Table 1), which indicates that incremental gains can be obtained by enhancing these factors. Moreover, in a high role conflict and overload environment, provision of task variety appears to hold distraction potential and is beneficial for performance (see Figure 3) and turnover.

Striking a Balance / 83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
intentions (see Figure 5). At the same time, task variety holds a risk of overstimulation, especially if role ambiguity is high (see Figure 5), or of too much distraction if role conflict (see Figure 3) and/or role overload (see Figure 5) are low.

- Increasing autonomy and feedback in a high role ambiguity environment might do more harm than good (at odds with conventional wisdom). Additional autonomy and/or feedback is likely to increase job satisfaction and, to some extent, organizational commitment. However, they also hold the potential to overstimulate those salespeople exposed to high role stress, which results in significantly lower performance and higher job tension (see Figures 3 and 4). This in turn can have adverse long-term effects because salespeople are likely to be overwhelmed by the demanding role environment and, paradoxically, enriching job environment.

What should the sales manager do? Although managers must remain sensitive to contextual factors (Singh, Verbeke, and Rhoads 1996), in general it appears that the sales manager can improve the work environment of his or her salespeople by doing three things: (1) reducing role stress to a moderate level if possible, (2) increasing moderately the task-related job characteristics that directly buffer the effects of role stress, and (3) increasing moderately non-task-related job characteristics that have functional consequences (e.g., participation). In short, the sales manager must strike a balance, do things in moderation, and remain ever vigilant for signs of over- or understimulation. Although this is largely at odds with the conventional wisdom that comes from a large body of mostly consistent findings, these implications are in harmony with common sense. Common sense says that stress has stimulation potential because manageable levels of stress motivate people to high levels of performance and personal satisfaction in overcoming challenging tasks. Common sense also says that people’s effectiveness in tackling challenging tasks is impaired when managers overemphasize their task environment by such factors as too much feedback (so that it paralyzes), too much autonomy (so that it hinders direction), or too much variety (so that it decreases). Nevertheless, because of their significant implications, these propositions warrant careful thought and reflection by managers.

The study holds implications for researchers as well. In addition to a call for further research on curvilinear and interactional propositions, two directions are worth pursuing. First, role stressors have equivocal effects on job outcomes, and though not directly investigated here, the direction of the effects (i.e., positive or negative) is likely to vary with a person’s coping resources and abilities. This introduces significant noise in the empirical relationships between role stressors and job outcomes, leading some researchers to call for a search for potential moderators (Jackson and Schuler 1985). An alternative approach is to shift attention to a construct that (1) relates to role stressors, (2) accounts for people’s coping resources, and (3) has unequivocal effects on critical job outcomes. One interesting possibility is the construct of “burnout tendencies” (Maslach 1982), which appears to be well-developed (Cordes and Dougherty 1993), is shown to mediate the effects of role stressors on job outcomes, and captures the dysfunctional effects of role stressors (Singh, Goolsby, and Rhoads 1994).

Second is the direction that pertains to a common framework for examining the influence of job characteristics and role stressors on job outcomes. The results indicate that, in addition to their main effects, their interactional influence is significant for the job performance, perceived job tension, and turnover tendencies of salespeople. At first glance, job characteristics and role stressors appear as distinctly different and disjointed bodies of literature and as less amenable to examination under an overarching framework. Moreover, job characteristics appear to tap motivating factors (or positive enhancers), whereas role stressors seemingly capture demotivating elements (or negative hindrances). However, Ilgen and Hollenbeck (1991) have initiated an impressive effort to understand the structure of work from the perspective of a job versus role distinction. Using the notion that a “job” represents established task elements, whereas a “role” reflects emergent elements, Ilgen and Hollenbeck seek to enrich the conceptualization of job characteristics as well as role stressors. From my perspective, there is nothing inherently demotivating about role stressors, just as there is nothing inherently motivating about job characteristics. Both factors can hold either motivating or demotivating potential, depending on the situation. This perspective favors a holistic approach toward job design and role taking that attempts to exploit the motivating possibilities of both. Similar to Ilgen and Hollenbeck (1991, p. 203), I reaffirm that, “although the development of an integrated approach to jobs and roles represents a large undertaking, we feel that the conceptual payoff from such an endeavor warrants the effort.” However, I add that pay-offs are not less significant for managers such as the sales manager who is searching to strike the right balance to achieve high levels of performance effectiveness and psychological well-being among his or her salespeople. I urge future researchers to pursue these directions, unleash the motivating potential of role stressors and job characteristics, and realize the pay-offs for theory and practice.

REFERENCES

Bentler, Peter (1990), “Comparative Fit Indexes in Structural Mod-

Maslach, Christina (1982), "Understanding Burnout: Definitional Issues in Analyzing a Complex Phenomenon," in *Job Stress and Burnout: Research, Theory, and Intervention Perspectives,*