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Abstract

In this paper, we develop an e�cient lattice algorithm to price European and American options

under discrete time GARCH processes. We show that this algorithm is easily extended to price

options under generalized GARCH processes, with many of the existing stochastic volatility bivariate

di�usion models appearing as limiting cases. We establish one unifying algorithm that can price

options under almost all existing GARCH speci�cations as well as under a large family of bivariate

di�usions in which volatility follows its own, perhaps correlated, process.



Duan (1995) shows through an equilibrium argument that options can be priced when the dy-

namics for the price of the underlying instrument follows a General Autoregressive Conditionally

Heteroskedastic (GARCH) process. While the theory of pricing under such processes is now well

understood, the design of e�cient numerical procedures for pricing them is lacking. Most applica-

tions resort to large sample simulation methods with a variety of variance reduction techniques. The

complexity of pricing arises from the massive path dependence inherent in GARCH models. This

path dependence causes typical lattice based procedures to grow exponentially in the number of time

increments. The lack of e�cient numerical schemes hinders empirical tests among the wide array

of competing GARCH models. Most tests of GARCH models limit themselves to the use of high

frequency data on spot assets, with little attention placed on the information content of options 1.

Indeed, to our knowledge, other than Duan (1996a), there have been no approaches that imply out

GARCH parameters using a theoretically justi�ed GARCH option pricing model2. Moreover, pricing

American options under GARCH processes using simulation methods has not been well studied.

GARCH type processes can be linked to bivariate di�usion models and vice versa. Nelson (1990),

for example, shows that certain GARCH processes can be used to approximate some bivariate

di�usion models. More recently, Duan (1996a,c) generalizes these results and brings the largely

separate GARCH and bivariate di�usion literatures together. Indeed, Duan (1997,1996b) shows

that most of the existing bivariate di�usion models that have been used to model asset returns

and volatility, can be represented as limits of a family of GARCH models. As a result, even if one

prefers modelling prices and volatilities by a bivariate process, there may be advantages in estimating

parameters of the model using GARCH techniques. Conversely, if one prefers the GARCH paradigm,

there may be some advantages in implementing option models using the existing vast literature on

numerical procedures for pricing under bivariate di�usions.

The purpose of this article is to do just the reverse. We establish an e�cient lattice algorithm

for pricing European and American options under discrete time GARCH processes. This algorithm

is then extended to price options under generalized GARCH processes, which contain many of the

existing bivariate di�usion models as limiting cases. By setting up an e�cient computation scheme

for the generalized GARCH model, we are able to solve option problems not only for GARCH

processes, but also for many bivariate di�usions. For example, by suitably curtailing the parameters

of generalized GARCH processes, we can obtain European and American option prices under the

stochastic volatility models of Hull and White (1987), Scott (1987), Wiggins (1987), Stein and

Stein (1991), and Heston (1993).

Providing simple computational schemes for pricing options under GARCH and stochastic volatil-
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ity should be of direct interest to empiricists who are interested in comparing alternative GARCH

structures for the asset return dynamics and would like to incorporate information implied by the

existing set of option prices. These models should also be of interest to researchers who want to com-

pare alternative stochastic volatility bivariate di�usion models. The lattice algorithm presented here

should allow them to experiment with many alternative structures in a single modeling paradigm.

Finally, this article contributes to the literature by providing an e�cient way to compute American

options under GARCH processes, as well as stochastic volatility bivariate di�usions3. The paper

proceeds as follows. In section I we review the basic GARCH option pricing model of Duan (1995).

In section II we describe the problems caused by the massive path dependence inherent in GARCH,

and provide the main result that permits the design of an e�cient lattice based approximation to

the GARCH process. In section III we discuss how option contracts can be priced using this lattice.

In section IV we illustrate the convergence properties of the algorithm and show how it can be

readily modi�ed to price claims under a variety of GARCH processes. Section V extends the lattice

algorithm to approximate generalized GARCH models which converge to bivariate di�usions that in-

clude processes used by Hull and White (1987), Heston (1993), Stein and Stein (1991), Scott (1987),

Wiggins (1987), and others. This section shows that option prices under many stochastic volatility

bivariate di�usions can be e�ciently computed using the approximating GARCH model. Finally, in

section VI we provide a summary and outline the types of empirical issues that now can be more

readily addressed.

I The GARCH Option Model

Let St be the asset price at date t, and ht be the conditional variance, given information at date t,

of the logarithmic return over the period [t; t+1] which (without loss of generality) we call a \day".

The dynamics of prices are assumed to follow the process

ln(
St+1

St
) = rf + �

p
ht �

1

2
ht +

p
ht�t+1 (1)

ht+1 = �0 + �1ht + �2ht(�t+1 � c)2 (2)

where �t+1, conditional on information at time t, is a standard normal random variable. The riskless

rate of return over the period is rf . The unit risk premium for the asset is �.

The particular structure imposed in equation (2) is the nonlinear asymmetric GARCH (NGARCH)

model, that has been studied by Engle and Ng (1993) and Duan(1995). The nonnegative parameter

c captures the negative correlation between return and volatility innovations that is frequently ob-

served in equity markets. (The model simpli�es to the popular GARCH model of Bollerslev (1986)
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when this correlation is absent.) To ensure that the conditional volatility stays positive �0, �1, and

�2 should be nonnegative.

Duan (1995) derives a pricing mechanism for derivative securities when the price of the underlying

security follows the above process. In particular, under suitable preference restrictions, he establishes

a local risk neutralized probability measure under which option prices can be computed as simple

discounted expected values4. The process under the local risk neutralized measure is

ln(
St+1

St
) = (rf �

1

2
ht) +

p
ht�t+1 (3)

ht+1 = �0 + �1ht + �2ht(�t+1 � c�)2 (4)

where �t+1, conditional on time t information, is a standard normal random variable with respect

to the risk neutralized measure, and c� = c + �. The above model has �ve unknown parameters,

namely �0, �1, �2, c
�, and the initial variance h0.

Most implementations of GARCH option pricing models use Monte Carlo simulation to price

European options5. Typically, very large replications are required to obtain precise estimates, even

when variance reduction techniques are used. In addition, simulation procedures for American

options are still quite tedious. In the next section we develop a simple lattice based algorithm for

pricing claims under the above GARCH process. The algorithm is extremely e�cient and readily

permits the pricing of American options.

II Approximating the GARCH Process

Pricing options under GARCH processes using lattices has been di�cult because of the inherent

path dependence that leads to an exploding number of states. To illustrate this, assume a simple

Bernoulli sequence is used to proxy the standard normal random variable in equations (3) and (4).

After one period there are two prices with two distinct updated variances. Since the variances in

the up-node and down-node are di�erent, there is no reason that the price resulting from an up and

then down path equals that obtained from the down and then up path. As a result, after two periods

there are four asset prices with four variances. Since paths do not reconnect, such an approximation

leads to an exploding number of states for the two state variables.

The key to an e�cient implementation is to design an algorithm that avoids an exponentially

exploding number of states. Towards this goal, we begin by approximating the sequence of single

period lognormal random variables in equation (3) by a sequence of discrete random variables. In

particular, assume the information set at date t is fSt; htg and let yt = ln(St). Then, viewed from
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date t, yt+1 is a normal random variable with conditional moments

Et[yt+1] = yt + rf �
1

2
ht (5)

V art[yt+1] = ht: (6)

We establish a discrete state Markov chain approximation, f(yat ; hat ) j t = 0; 1; 2; : : :g, for the dynam-
ics of the discrete time state variables that converges to the continuous state, discrete time, GARCH

process, f(yt; ht) j t = 0; 1; 2; : : :g. In particular, we approximate the sequence of conditional normal

random variables by a sequence of discrete random variables. Given this period's logarithmic price

and conditional variance, the conditional normal distribution of next period's logarithmic price is

approximated by a discrete random variable that takes on 2n+ 1 values. There are n values larger

than the current price, n values smaller than its current value, and a value that is unchanged. If,

for example, n = 1, then the approximation consists of a trinomial random variable. The lattice we

construct has the property that the conditional means and variances of one period returns match the

true means and variances given in equations (5) and (6), and the approximating sequence of discrete

random variables converges to the true sequence of normal random variables as n increases6.

In the usual binomial approximation of a Wiener process the size of the local Bernoulli jumps

equals the volatility over the time increment. Indeed, if the �rst two conditional moments on the

lattice are to match the true moments, then the magnitude of the jumps is uniquely determined

by the volatility. In GARCH processes the volatility changes through time and hence Bernoulli

approximations require di�erent jump sizes along the path. This leads to a nonrecombining tree in

which adjacent logarithmic prices are not separated by a �xed constant. On the other hand, if a

sequence of equally spaced trinomial (or more generally, multinomial) variables are used, then the

�rst two moments can be matched without uniquely locking in this space partition. This observation

permits the same grid of points to be used to approximate a wide range of normal random variables

that di�er in means and variances. As we shall see, this fact is helpful in that it permits lattices

to be built o� a single grid of equidistant logarithmic prices. Hence, in what follows we always use

a multinomial approximation to the normal with at least three points, i.e., with n � 1. For the

degenerate case where volatility is constant (i.e., �1 = �2 = 0) and n = 1, the lattice we construct

collapses to the trinomial model of Kamrad and Ritchken (1991). Further, for constant volatility

and n > 1 our approximating sequence consists of identical multinomial jumps over all periods7.

We �rst establish a grid of logarithmic prices to approximate the possible states of nature during

the life of the option. Let  be a �xed constant that determines the gap between adjacent logarithmic

prices on this grid. Over each day we require a 2n+1 point approximation to a normal distribution

with mean and variance given by equations (5) and (6). The gap between adjacent logarithmic
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prices is determined by  and n. In particular, the gap is n where

n =
p
n

At date t assume that the logarithmic price and variance are given. The actual size of these 2n+ 1

jumps depends on the variance, but we restrict them to be integer multiples of n. If the variance is

\small" then discrete probability values can be found over the grid of 2n+1 prices surrounding the

current price, such that the conditional mean and variance of these 2n+ 1 points match the values

of the conditional normal distribution being approximated. However, if the variance is su�ciently

large then it may not be possible to �nd valid probability values for the surrounding 2n+ 1 prices

such that the �rst two moments of the approximating distribution match. In this case, we construct

an approximating distribution that uses every second point above (below) the current value, as

well as the unchanged value. Each of these points is separated by a gap of 2n. If these \double-

sized" jumps do not permit the means and variances to be exactly matched while producing valid

probabilities, then the approximating scheme uses points separated by larger n multiples.

Let � be the smallest integer multiple that allows the mean and variance of next period's loga-

rithmic price to be matched to the true moments while at the same time ensuring that all the 2n+1

probability values are valid numbers in the interval [0; 1]. We refer to � as the jump parameter.

The proposition below provides us with a method for determining � for any given volatility level.

Clearly, � will depend on the space parameter, .

More formally, assume that at date t the logarithmic price is yat and the conditional variance is

hat ; where the superscript a denotes values derived from using 2n + 1 point approximations to the

conditional normal distributions along the lattice. Over the next period the logarithmic price moves

to one of 2n+ 1 points and the variance is updated according to the magnitude of the move in the

asset price,

yat+1 = yat + j�n (7)

hat+1 = �0 + �1h
a
t + �2h

a
t [�

a
t+1 � c�]2 (8)

where

�at+1 =
j�n � (rf � hat =2)p

hat
(9)

and j = 0;�1;�2; : : : ;�n. The jump parameter � is an integer that depends on the level of the

variance. It is chosen such that

(� � 1) <

p
hat


� � (10)

where  is the �xed constant which in conjunction with n determines the logarithmic price grid. We

choose  =
p
ha0 for the calculations in this paper8. In the following proposition we see that viewed
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from time t, �at+1 is a discrete state random variable, with mean 0 and variance 1, that converges in

distribution to a continuous state standard normal random variable as n!1.

All that remains to complete the speci�cation of the dynamics of the approximating process is

the assignment of probabilities for the transitions. We do this by e�ectively splitting each period

(day) into n subintervals of equal length, 1
n
: The variance is constant over each of these subintervals,

but is updated at the end of the day. The price may be thought of as evolving over the course of the

day as a sequence of n independent, constant volatility, normal processes which we approximate by a

sequence of n trinomial distributions 9. Over each day, then, we have 2n+1 possible outcomes. The

probability of each of the 2n+ 1 jumps of size �n for the whole day is the same as the probability

for the corresponding paths along an n-step trinomial tree that lead to that node. The probability

distribution for yat+1 conditional on yat and hat is then given by

Prob
�
yat+1 = yat + j�n

�
= P (j) j = 0;�1;�2; : : : ;�n

where

P (j) =
X

ju;jm;jd

0
@ n

ju jm jd

1
A pjuu pjmm p

jd
d (11)

with ju; jm; jd � 0 such that n = ju + jm+ jd and j = ju � jd. The expression in brackets denotes

the trinomial coe�cient n!
ju!jm!jd!

and the trinomial probabilities are

pu =
hat

2�22n
+

(rf � hat =2)
p
1=n

2�n
(12)

pm = 1� hat
�22n

(13)

pd =
hat

2�22n
� (rf � hat =2)

p
1=n

2�n
: (14)

Proposition 1 investigates the behavior of this discrete state process.

Proposition 1 The discrete state approximating process given in equations (7) through (14) has

the following properties:

1. The distribution of the discrete state random variable yat+1, given the state variables (yat ; h
a
t )

at date t, has mean rf � hat =2 and variance hat .

2. The discrete state random variable �at+1, given information at date t, has zero mean, unit vari-

ance and converges to a continuous state standard normal distribution as n!1. Equivalently,

yat+1, given information at date t, converges to a normal distribution as n!1.
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3. The process f(yat ; hat ) for t = 0; 1; : : :g in equations (7) and (9) converges to the GARCH

process given in equations (3) and (4) as n!1.

Proof: See Appendix.

Proposition 1 provides the basis for our discrete state approximation to the continuous state

GARCH process described by equations (3) and (4). It is best understood by considering an example.

Assume that over each day the underlying price process is GARCH as in equations (1) and (2).

We will approximate the risk neutralized process (equations (3) and (4)) by a lattice of prices for

the case n = 1. Over each day the approximating logarithmic prices on the lattice then represent

consecutive drawings from trinomial distributions with means and variances that match the true

means and variances of the GARCH process. Suppose that the current underlying price is S0 = 1000,

the risk free rate is rf = 0, the risk premium is � = 0, �0 = 0:000006575, �1 = 0:90, �2 = 0:04, c = 0

and the initial daily variance of h0 = 0:0001096 corresponds to an annual volatility of 20 percent.

Choose a grid of approximating logarithmic prices at spacings of 1 =  =
p
h0 = 0:0105 around

the initial value of the logarithmic price ya0 = lnS0 = 6:9078. Figure I shows the �rst three days of

the evolution of the lattice de�ned by equations (7) through (14) on this grid. Since the parameter

 controls the spacing between the logarithmic returns, all the approximating logarithmic prices are

separated by this value.

Figure I Here

To help describe the construction of the approximating process, let node (t; i) represent the node

at day t when the logarithm of the stock price is at \level" i, where i counts the net number of 

up jumps since date 0. In particular, if yat (i), represents the logarithmic price at this node, then

yat (i) = y(0) + i

where i = �Md(t); : : : 0; : : :Mu(t) and Md(t) (Mu(t)) is the maximum number of units of  that

the price can jump down (up) over t consecutive periods 10. To construct the lattice we begin by

using equation (10) to compute � at the initial node. With  chosen as
p
h0, the value for the jump

parameter at date 0 is � = 1. This implies that the jumps are \single " jumps. Equation (7) is used

to �nd the three successor stock prices. For each of these three jumps, equation (9) is computed to

establish the normalized innovation, and equation (8) is used to calculate the variance for the next

period. Note that after one period there are three states, each with di�erent prices and variances.

The probabilities associated with the three jumps can be computed using equations (11) through
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(14). By construction, these probabilities are always between 0 and 1. At this stage, however, these

probabilities are not required.

In Figure I we see that at nodes (1;�1) and (1; 0) the value of � = 1 (\single " jumps), while

at node (1; 1) the value is 2 (\double " jumps). So at node (1; 1), the three successor nodes are

separated from each other by 2. Figure 1 shows that the successor nodes at (1; 1) are (2;�1),
(2; 1) and (2; 3). The volatility at node (1; 1) is su�ciently large that if we restricted the jumps

to be \single " jumps, then, in order to match the mean and variance of the conditional normal

distribution from that node, some probabilities would fall outside the range [0; 1]. By allowing the

jumps to be integer multiples of  we can ensure that the probabilities stay in the interval [0; 1].

Notice also that once period 2 is reached, the variances at individual nodes may not be unique. For

example, there are three paths to node (2;�1), namely from (1; 1), (1; 0) and (1;�1). In Figure 1

the maximum and minimum variances along all possible paths to each node are reported in the

boxes at the nodes. (They are multiplied by 105 to ease reading.)

With n = 1 there are exactly three successor nodes for each price and variance combination on

the lattice. For example, consider node (2;�1). Since there are three possible paths to this node

from the initial (0; 0) node, there are three possible variances here. Associated with each of these

variances is an � value which determines the successor nodes. At node (2;�1) the three di�erent

variances produce two di�erent � values. For the two lower variance values, � = 1 produces valid

probabilities and the successor nodes are the three closest nodes. However, for the higher variance

value, � = 2 and \double-sized"  jumps are required. Without conditioning on the variance, there

are �ve successor nodes from node (2;�1). However, there are only three successor nodes for each

possible variance.

Once all the � values are established for day 1, then the lowest and highest values of the logarith-

mic prices for day 2 are known. Speci�cally, the maximum number of down jumps isMd(2) = 2, and

the maximum number of up jumps is Mu(2) = 3. In general once the state variables are identi�ed

in period t, the � values can be computed and the extreme nodes in period t+ 1 can be identi�ed.

This example illustrates two properties of the lattice. First, in spite of the fact that variances

are heavily path dependent, for a given n, we are able to �x the topology so that the logarithm of

stock prices on the lattice are separated by a constant, n. As a result, the number of possible stock

prices grows linearly in the number of periods, rather than exponentially as in a nonrecombining

tree. This desirable property is made possible by Proposition 1 which limits the choice of successor

prices to a particular grid of values and ensures that the probability values for the successor nodes

can be chosen in such a way that the true means and variances are matched, without violating the
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necessary condition that the probabilities remain between 0 and 1.

Second, at any given node there is a number of di�erent volatilities. In general, the number of

distinct volatilities at a particular node depends on the number of di�erent paths that can be taken

to the node. An option price critically depends on volatility, so at each node there could be as

many distinct option prices as paths to the node. Since the number of distinct paths to nodes may

increase exponentially as the number of time periods increases, it is not feasible to track all distinct

volatilities (and option prices) at each node.

To capture this path dependence we keep track of only the maximum and minimum variances,

rather than of all the variances, that can occur at each node. We approximate the state space

of variances at each node by K values selected to span the range between these maximums and

minimums. Let hmin
t (i) and hmax

t (i) represent the minimum and maximum variances that can be

attained at node (t; i). Option prices at this node are computed for K levels of variance ranging

from the lowest to the highest at equidistant intervals. In particular, let hat (i; k) represent the k
th

level of the variance at node (t; i) with k = 1; : : : ;K, where

hat (i; k) = hmin
t (i) + �t(i)(k � 1) for k = 1; 2; 3; : : : ;K (15)

and

�t(i) =
hmax
t (i)� hmin

t (i)

K � 1
:

Here �t(i) is the constant gap between adjacent variances at node (t; i). The total number of

stock price and variance combinations on the lattice at time period, t, equals the number of di�erent

yat values multiplied by K. Since the number of di�erent stock prices on the lattice grows linearly in

the number of time periods, and K is a chosen constant, our lattice captures the path dependency of

the GARCH process without inducing an exploding tree. Convergence of this approximating process

to the true GARCH process is ensured as n!1 and K !1.

It is simple to obtain the maximum and minimum values for the variance at any particular node.

For the GARCH process in our example, the extreme values at node (t; i) are uniquely determined

by the extreme values at the period (t� 1) nodes that can reach node i in period t. These extremes

can readily be established using a forward dynamic program.

Figure I illustrates this forward scan for the �rst three days of the lattice. At each day we

determine the set of feasible logarithmic prices and at each of these nodes we determine the minimum

and maximum variance of all paths to that node. This completes the �rst phase of the algorithm.
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III Pricing Options on the Lattice

Once the above information is established, option prices can be computed on the lattice using

standard backward recursion procedures. The procedure we use follows that used by Ritchken,

Sankarasubramanian, and Vijh (1993) in pricing American options on the average, by Hull and

White (1993) in pricing a variety of exotics, and by Li, Ritchken, and Sankarasubramanian (1995) in

providing e�cient implementation of some Heath, Jarrow, Morton (1992) interest rate models. At

each node we evaluate option prices over a grid of K points covering the state space of the variances

from the minimum to the maximum. We begin by setting up a vector of option prices of size K at

each terminal node. Each entry in the vector corresponds to an option price, with the price in the

�rst cell of the vector corresponding to the smallest conditional variance, while the price at the Kth

entry corresponding to the price when variance is a maximum. Let Ca
t (i; k) correspond to the kth

option price at the node (t; i) (for k = 1; 2; : : :K) when the underlying asset price is Sa
t (i) = ey

a
t (i)

and the variance is hat (i; k).

Note that in the �nal period, T , the payout of a standard claim is fully determined by that

period's asset price alone. Hence, each K-vector of option prices at each terminal node, will consist

of K equal entries. For example, the boundary condition for a standard call option with strike X

which expires in period T is

Ca
T (i; 1) = Ca

T (i; 2) = : : : = Ca
T (i;K) =Max[0; Sa

T (i)�X ] (16)

We apply backward recursion to establish the option price at date 0. Consider a node in period t,

say node (t; i), and assume that the option price Ca
t (i; k), corresponding to variance h

a
t (i; k) at that

node, is to be computed. We use Proposition 1 to compute the 2n+1 (forward) successor nodes. In

particular, given the variance hat (i; k), we compute the appropriate jump parameter, �, by equation

(10). The successor nodes for this variance are (t + 1; i+ j�) where j = 0;�1; : : : ;�n: Equations
(8) and (9) are used to compute the period (t+1) variance for each of these nodes. Speci�cally, for

the transition from the kth variance element of node (t; i) to node (t + 1; i+ j�), the period (t+1)

variance is given by

hnext(j) = �0 + �1h
a
t (i; k) + �2h

a
t (i; k)[(j�n � rf + hat (i; k)=2)=

p
hat (i; k)� c�]2: (17)

However, at node (t + 1; i+ j�), we have stored option prices for only K di�erent variance levels.

While these variances span the space of all possible variances generated along all paths to that node,

there may not be a variance entry corresponding exactly to hnext(j). Hence, there may not be a

corresponding option price stored. If this is the case, then linear interpolation of the two stored
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option prices corresponding to the two stored variance entries closest to hnext(j) is used to obtain

the option price corresponding to a variance of hnext(j). Let L be an integer smaller than K de�ned

such that

hat+1(i+ j�; L) < hnext(j) � hat+1(i+ j�; L+ 1): (18)

The interpolated option price is

cinterp(j) = q(j)Ca
t+1(i+ j�; L) + (1� q(j))Ca

t+1(i+ j�; L+ 1) (19)

where

q(j) =
hat+1(i+ j�; L+ 1)� hnext(j)

hat+1(i+ j�; L+ 1)� hat+1(i+ j�; L)
: (20)

In this way an option price is identi�ed for each of the 2n+ 1 jumps from node (t; i) with variance

hat (i; k). In each case, either node (t+ 1; i+ j�) contains a variance entry (and hence option value)

which matches hnext(j), or the relevant information is interpolated from the closest two entries. We

use equations (11) through (14) to compute the expectation of these option prices over all these

2n + 1 successor nodes, and discount it at the riskless rate to obtain the unexercised option value

C
a go
t (i; k): That is,

C
a go
t (i; k) = e�rf

nX
j=�n

P (j)cinterp(j): (21)

Denote the exercised value of the claim by Ca stop
t (i; k). For an American call option with strike X ,

this is

C
a stop
t (i; k) =Max[Sa

t (i)�X; 0]: (22)

The value of the claim at the kth entry of node (t; i) is then

Ca
t (i; k) =Max[Ca stop

t (i; k); Ca go
t (i; k)]: (23)

The �nal option price, obtained by backward recursion of this procedure, is given by Ca
0 (0; 1)

11.

To illustrate this option pricing procedure, reconsider our three period example where each day a

trinomial approximation to the conditional normal distribution is used (n = 1). Let K = 3, so that

the minimum, maximum, and mid-point variances are stored at each node, as are the corresponding

option values. Figure II illustrates the calculations for the case of a three-period (T = 3) at-the-

money European call option.

Figure II Here

At each node the maximum and minimum variances over all possible paths to that node are shown

in the left column. (These are the same as the values shown in Figure I.) The right column shows
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the option values corresponding to these maximum and minimum variances, as well as the values

corresponding to the mid-point variances. Notice that at the expiration date all K = 3 option values

at each node are identical, due to the expiration condition for a European call. At the origin, all

K = 3 option prices are also identical, since there is only one initial variance.

IV Convergence Properties of the Algorithm

In this section we illustrate the rate of convergence of option prices produced on the lattice to their

true values. Con�dence intervals for the theoretical prices of European options are obtained using

large sample sizes in Monte Carlo simulations of equations (3) and (4). The rate of convergence

of the algorithm to these true option prices is governed by the choice of the parameters n (which

governs the order of each day's multinomial approximation to the conditional normal distribution)

and K (the number of variances used to span the variance space) with more precision being obtained

as these values are increased (for a given choice of ).

We �rst investigate the convergence behavior as n increases for a �xed value of K = 20. Table I

shows the convergence of at-the-money European call option prices for di�erent maturities. The rate

of convergence to theoretical prices is quite rapid. For longer term contracts, a choice of n = 1 works

satisfactorily. For short term European options, one might imagine that a larger n may be necessary.

Table I indicates that as the maturity date declines, larger n values are needed. Surprisingly, though,

small n values do appear to produce reasonable results. Indeed, using more than nine points (i.e.,

n > 4) to approximate the conditional normal distributions appears to provide little improvement

in precision.

Table I Here

Table II also compares the prices of di�erent maturity at-the-money call options to prices pro-

duced by simulation. In this table n = 5 and the sensitivity to the volatility space parameter, K, is

explored. For short term contracts a very small K leads to accurate prices. There are few paths to

any node, so there is little path dependence. For longer term contracts there is more path depen-

dence and K needs to be increased. For all maturities, however, prices produced with K = 20 and

K = 40 are almost identical12.

Table II Here

Table III compares the prices of a range of in- and out-the-money contracts from a lattice with
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n = 5 and K = 20 to their theoretical values. In all cases the algorithm produces results close to

the theoretical values.

Table III Here

Since there is no available method for computing the theoretical value of an American option

under a GARCH process, we examine the behavior of the early exercise premium with respect to the

parameter n. Table IV shows prices from lattices with di�erent n's and K = 20 for a variety of at-

the-money American puts. Also shown are the corresponding European prices (which converge well

on the basis of the preceeding analysis) and the early exercise premium expressed as a percentage

of the American price. It is clear from this table that, as was the case for the European call options

in Table I there is little advantage to using multinomial approximations with n > 4.

Table IV Here

The algorithm presented is not restricted to NGARCH models. It can be applied to most GARCH

models where variances are updated according to their current values and recent asset innovations.

By modifying the variance updating scheme in equation (8) European and American option prices

can readily be computed.

V Pricing Under Generalized GARCH and Bivariate Di�u-

sion Processes

Some researchers �nd the GARCH speci�cation mechanical from the perspective of option pricing

and prefer modeling volatility as a separate di�usion, perhaps correlated with the return gener-

ating di�usion. It turns out, however, that certain univariate GARCH processes can be used to

approximate some bivariate di�usion models with stochastic volatility. Nelson (1990), for example,

has shown that the linear and exponential GARCH models converge weakly to speci�c stochastic

volatility bivariate di�usion models. In a very insightful paper, Duan (1997) generalizes these re-

sults. In particular, he shows that his augmented family of stationary generalized GARCH processes

can be used to approximate a rich array of bivariate di�usion models.

The relationship between GARCH processes and bivariate di�usion models allows the rich

set of statistical tools for GARCH to be used to estimate the parameters of bivariate di�usions.

Duan (1997) also argues that the rich family of numerical option pricing techniques, already de-

veloped for di�usion systems, could be used to compute option prices even if the GARCH option
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pricing model is the preferred paradigm. We now show that the reverse is true. Speci�cally, pricing

options under bivariate di�usions can be accomplished by �rst approximating the bivariate di�usions

by generalized GARCH processes, and then e�ciently pricing contracts under these processes using

modi�cations to our simple lattice algorithm.

Rather than describing the algorithm from the most general perspective of Duan's augmented

GARCH family, we make matters more concrete by illustrating it using the NGARCH speci�cation

used in the previous sections. The conditional variance process of the limiting di�usion for this model

is a process which includes that used by Hull and White (1987) in their stochastic volatility option

pricing model. Furthermore, Duan shows that the limiting di�usion is the same as the limiting form

of the Glosten, Jagannathan, and Runkle (1993) GJR-GARCH model, which is commonly used to

model the volatility in equity prices.

Partition each time period (\day") into m \trading periods" of width �t = 1=m. Label these

trading periods by consecutive integers starting from the beginning of the current period, period 0.

Let yt be the logarithmic price at the beginning of the t
th trading period, and let ht be the variance

for this trading period. Assume y0 and h0 are given. The dynamics of the return generating process

are

yt+1 = yt + (rf + �
p
ht � ht=2)�t+

p
ht
p
�t�t+1 (24)

ht+1 = ht + �0�t+ ht[�1 + �2q � 1]�t+ ht�2
p
�t[(�t+1 � c)2 � q] (25)

where q = (1 + c2) and the sequence f�t j t = 0; 1; 2; : : :g is a sequence of independent standard

normal random variables. Notice that when �t = m = 1 this equation reduces to the GARCH

model speci�ed in equations (1) and (2).

Duan (1996b) shows through an equilibrium argument that a local risk neutralized valuation

relationship holds, in which options can be priced as if the economy were risk neutral under the

pricing measure

yt+1 = yt + (rf � ht=2)�t+
p
ht
p
�t�t+1 (26)

ht+1 = ht + �0�t+ ht[�1 + �2q � 1]�t+ ht�2
p
�t[(�t+1 � c� �

p
�t)2 � q] (27)

where f�t j t = 0; 1; 2; : : :g is a sequence of independent standard normal random variables. When

�t = m = 1, these equations reduce to equations (3) and (4).

Duan shows that the limiting di�usion of the process for the price of the underlying security in

equations (24) and (25) is

dyt = (rf + �
p
ht � ht=2)dt+

p
htdW1(t) (28)
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dht = [�0 + (�1 + �2q � 1)ht]dt� 2c�2htdW1(t) +
p
2�2htdW2(t) (29)

where dW1(t) and dW2(t) are independent Wiener processes. The limiting di�usion under the locally

risk neutralized measure is shown to be

dyt = (rf � ht=2)dt+
p
htdZ1(t) (30)

dht = [�0 + (�1 + �2q � 1 + 2��2c)ht]dt� 2c�2htdZ1(t) +
p
2�2htdZ2(t) (31)

where dZ1(t) and dZ2(t) are independent Wiener processes.

With minor adjustments our lattice algorithm can price options under the bivariate di�usion

process given in equations (30) and (31). This is accomplished by pricing the contracts under the

approximating generalized GARCH process in equations (26) and (27). The adjustment involves

partitioning each period (day) of the procedures, given in Sections II and III, into m trading periods,

each of length �t = 1=m, and modifying equations (7) through (9) to reect equations (26) and (27)

rather than equations (3) and (4). In particular, in Section II we approximate the \daily" GARCH

model on our lattice by e�ectively dividing each day into n equal increments, where each increment

has the same volatility. In the generalized GARCH model here, each of the m trading periods each

day has a di�erent volatility. We approximate this model on our lattice by dividing each of these m

trading periods into n increments of equal volatility, approximated by trinomial distributions.

Thus, for each trading period of each day, we have an approximation for the conditional normal

distribution of the logarithmic price that consists of a discrete distribution over (2n+1) points. The

approximating distribution has the property that its �rst two moments match the true conditional

moments. As m increases, �t ! 0 and the generalized GARCH process converges to the required

bivariate di�usion. Hence our algorithm for pricing options under discrete time GARCH is easily

modi�ed to price options under generalized GARCH processes and hence under continuous time

bivariate di�usions.

Table V illustrates the prices, for a range of maturity at-the-money options, obtained using the

lattice (with n = 1 and K = 20) as the number of trading periods per day, m, is increased. Also

shown are the con�dence intervals for the theoretical prices generated by simulation of the bivariate

di�usion. Notice that the lattice prices converge very rapidly. Indeed, allowing the number of trading

periods per day to be just one or two (m = 1 or 2) appears to su�ce when the maturity of the

contract exceeds ten days.

Table V Here

Table VI compares option prices, for a range of strikes and maturities, from the lattice (with n=1
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andK = 20) to prices obtained by simulation of the limiting bivariate di�usion process. For contracts

with maturities shorter than 20 days, each day is broken up into four trading periods (m = 4), while

for longer term contracts only one trading period per day (m = 1) is used. The lattice produces

results that are consistently within the con�dence intervals produced by the simulation.

Table VI Here

Our algorithm is easily modi�ed to price options under a wide variety of stochastic volatility

bivariate di�usions. In particular, Nelson (1990) and Duan (1997) identify the di�usion limits of a

large family of generalized GARCH processes and show that they include almost all the stochastic

volatility models that have been developed in the literature to price options. The risk neutralized

process, and its di�usion limit, is also derived in Duan (1995,1996a,1996b) allowing options to be

priced as expected terminal values discounted at the riskless rate. Table VII provides examples from

this family. It shows a number of stochastic volatility bivariate di�usion models which have been

used in the literature and the generalized GARCH processes that converge to these di�usion limits.

Table VII Here

Our algorithm is easily modi�ed to handle all these speci�cations 13. Indeed, our lattice procedure

is viable as long as the distribution of the logarithm of the asset price is conditionally normal and the

variance updating process is a predictable function of its current level and the current innovation.

For pure GARCH models we only need to replace the variance updating scheme in equation (8)

(which reects equation (4)) with the appropriate scheme. Similarly, for the bivariate di�usion

model we only need to replace equation (27) with the appropriate variance updating scheme that

ensures convergence to the required bivariate di�usion.

VI Conclusion

This paper develops an algorithm that permits American option prices to be computed when the

underlying security price is driven by a wide variety of GARCH and stochastic volatility processes.

The algorithm is described in detail for the NGARCH model, but readily extends to handle almost

all GARCH processes where the variance updating mechanism is a predictable function of the cur-

rent level of the variance and the current innovation. The algorithm di�ers from the usual lattice

implementation of option pricing models in that a vector of option prices is carried along at each

asset price in the tree. Nonetheless, computations are e�cient. Indeed, the algorithm is useful not
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only for pricing American contracts, but also for European contracts, since fewer computations are

required than for simulation procedures.

This paper also shows how options can be priced using our lattice under generalized GARCH

processes. These processes are important since they converge to a very rich family of stochastic

volatility bivariate di�usions. We illustrate this by constructing a lattice procedure for the general-

ized NGARCH process which has a limiting bivariate di�usion that includes the system studied by

Hull and White (1987). The convergence of the lattice prices to prices generated by the stochastic

volatility process is explored in detail and found to be quite rapid. In general, our lattice algorithm

is easily modi�ed to price claims where the dynamics of the underlying are driven by a wide variety

of stochastic volatility processes. For example, option prices under dynamics postulated by Hes-

ton (1993), Hull and White (1987), Scott (1987), Stein and Stein (1991), Wiggins (1987) and others,

can readily be generated.

The research of Nelson (1990) and Duan (1997) has resulted in the merging of the very rich

GARCH and stochastic volatility literatures. It is possible to use the statistical procedures for

GARCH models to estimate the parameters of many stochastic volatility bivariate di�usions. Our

research strengthens the connections between these two literatures by providing a single lattice

algorithm that prices options under a very wide range of GARCH and bivariate di�usion processes.

Extensive empirical studies of option prices generated by GARCH models, and some bivariate

di�usions, have been lacking in the literature, primarily due to the lack of e�cient algorithms for

pricing American, and even European, options. Duan (1996a), for example, illustrates how GARCH

option models might be used to explain the volatility smile. Engle and Mustafa (1992) suggest a

strong link between parameters implied from option prices and those estimated from the time series

data for the price of the underlying security. In both studies, however, only very limited data sets

are utilized since very costly recursive simulations are used to imply out the parameters of a GARCH

model. With our e�cient pricing algorithm we now can conduct more complete empirical tests over

longer time horizons. As a result, the stability of GARCH parameters implied by option prices, and

option pricing biases from such models, can be more thoroughly explored. Moreover, our algorithm

permits alternative volatility evolution processes to be compared using the rich option data sets now

available. It remains for future research to conduct these tests to obtain a clearer understanding of

the processes governing the evolution of volatility in di�erent markets.
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Appendix

Proof of Proposition 1:

We begin this proof by considering the approximation over a single period, which we call a \day".

Assume that the state variables at the beginning of this period are (yat ; h
a
t ). We construct a discrete

approximation over the period such that the logarithmic price can move to n equidistant up and down

locations or stay the same, where the gap between any two logarithmic prices is an integer multiple of

n = p
n
, a constant. Probabilities are set for these 2n+1 points such that the mean and variance of

the logarithmic return match the mean and variance of the true process. We split this single period

into n subintervals of equal width 1
n
. The variance stays unchanged over each of these n subintervals.

At the end of the day the variance is updated according to equation (4). We approximate the day's

conditional normal distribution by a sequence of n independent identical trinomial distributions

over the n subintervals. Given hat , � can be computed. Over each subinterval of the day allow

the logarithm of the asset price to increase by �n (with probability pu), stay unchanged (with

probability pm), or decrease by �n (with probability pd). Notice that the determination of �

ensures that these probability values are between 0 and 1. The expected change and the variance of

the change over each subinterval are readily computed to be (rf � hat =2)=n and hat =n. Since the n

trinomial trials in the day are independent and identically distributed, the mean and variance over

the full day (period) are obtained as the required result.

The end of period distribution converges to a normal distribution, by the usual central limit theorem,

as the number of subintervals in the period (n) increases. In particular, the limiting distribution of

�at+1, viewed from date t is a standard normal random variable.

It follows that, as n increases, yat+1 (conditional on y
a
t and h

a
t ) converges to a normal random variable

with mean and variance equal to the mean and variance of the true process. It then follows that the

discrete time discrete, state process in equations (7) to (9) converges to the discrete time, continuous

state process in equations (3) and (4).
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1 See Bollerslev, Chou and Kroner (1992) and Bollerslev, Engle and Nelson (1994) for surveys of the

literature.

2 Duan (1996a) follows Engle and Mustafa (1992) in using simulation methods to imply out GARCH

parameters. However, Engle and Mustafa assume that agents are risk neutral.

3 Duan and Simonato (1997) concurrently develop a Markov chain approximation to a GARCH

process which they implement using sparse matrix techniques to price American options under

GARCH.

4 Kallsen and Taqqu (1998) derive the same result by a no-arbitrage condition in a continuous time

version of the GARCH model.

5 See Duan (1995,1996a), Amin and Ng (1993) and Engle and Rosenberg (1995), for example. The

simulations in the latter study are based on the estimated dynamics of the spot process, assuming

risk neutral agents.

6 In what follows, variables that have superscripts of a denote variables on the lattice that approxi-

mate the same variables without superscripts. By convergence, we mean that over each period, as

n!1 the approximating conditional distributions converge to normal distributions.

7 For related discussions on these constant volatility models see Boyle, Evnine and Gibbs (1989).

8 It is not advisable to have an extremely large value for . Kamrad and Ritchken (1991) explore

the convergence rate of their trinomial model to the Black Scholes equation as  increases. Their

recommendation is to choose  =
p
3=2� where � is the Black Scholes volatility. At this setting,

the probabilities of all three jumps are close to each other. If  is far from this value (e.g.,  = 10�)
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option prices still converge, although at a slower rate.

9 A similar concept is used by Kallsen and Taqqu (1998) who also assume that volatility remains

constant within each day of their continuous time GARCH model.

10 The means for computing Md(t) and Mu(t) are discussed shortly.

11 Actually all K entries of Ca
0 (0; k) will be the same, since all K entries of ha0(0; k) are equal to the

initial variance ha0 .

12 We assume a constant K throughout the lattice. While we can make the algorithm more e�cient

by allowing K to vary according to the range of variances at each node, our goal is to evaluate the

convergence of as simple an algorithm as possible.

13 Duan (1995,1996b) shows that the risk neutralized process for each generalized GARCH model

shown in Table VII is obtained by replacing �t+1 by �t+1 � �
p
�t.
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Figure 1: Lattice of State Variables over Three Days
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Figure 1 shows the first three days of the first phase of the lattice for an NGARCH model with parametersrf = 0,

λ = 0 , β0
66 575 10= × −. , β1 0 90= . , β2 0 04= .  and c = 0 . The grid of values for the logarithmic price of the

underlying, y S= ln , is determined by taking intervals of size γ = =h0 0 0105.  around the log of the initial price

S0 1000= . In this example, n = 1, giving three possible paths from each node for a given variance. Each node is

represented by a box containing two numbers. The top (bottom) number is the maximum (minimum) variance
(multiplied by 105) of all paths to that node. These variances determine whether the successor nodes are one or more
units of γ apart on the grid. At some nodes a variance value produces three paths which are two units apart.
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Figure 2: Illustrative Lattice for Three-Period At-the-Money Call Option
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Figure 2 shows the valuation of a three-period at-the-money European call option from the second phase of the
lattice procedure. Each node is represented by a box containing five numbers. The top (bottom) number in the first
column is the maximum (minimum) variance (multiplied by 105) of all paths to that node, as shown in Figure 1. In
this example K = 3, so three option values are carried at each node. These are shown in the second column. The top
number is the option value corresponding to the maximum variance, the bottom number is the value corresponding
to the minimum variance, and the middle number corresponds to the mid-point variance.
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Table I
Convergence of At-The-Money Call Option Prices

Table I shows the convergence of at-the-money European call option prices from the lattice as the order of the
multinomial approximation to each day’s conditional normal distribution increases. The lattice is for an NGARCH

model with rf = 0, λ = 0 , β0
66 575 10= × −. , β1 0 90= . , β2 0 04= . , c = 0 , S0 100=  and h0 0 0001096= . ,

equivalent to an annualized volatility of 20 percent. The maturities of the contracts are in days. The prices are
reported as the number of trinomial steps, n, increases, for fixed K = 20  and γ = h0 . For example, when n=5,

then (2n+1)=11 points are used to approximate each daily conditional normal distribution. The bottom two rows,
∞L  and ∞U , show the 95 percent confidence intervals for the true prices based on 500,000 simulations. The table

shows that prices converge very rapidly.

Trinomial Steps Maturity of Option (Days)

n 2 5 10 20 50 75 100 200

1 0.588 0.909 1.327 1.858 2.944 3.607 4.165 5.893

2 0.567 0.906 1.302 1.849 2.931 3.592 4.157 5.872

3 0.573 0.928 1.310 1.852 2.930 3.591 4.079 5.870

4 0.574 0.921 1.307 1.851 2.931 3.591 4.148 5.870

5 0.584 0.927 1.309 1.851 2.930 3.591 4.148 5.869

10 0.584 0.925 1.309 1.851 2.929 3.590 4.147 5.868

25 0.588 0.927 1.309 1.850 2.929 3.589 4.147 5.868

∞L 0.587 0.923 1.306 1.846 2.918 3.573 4.142 5.862
∞U 0.592 0.931 1.317 1.862 2.944 3.605 4.179 5.916
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Table II
Convergence of At-The-Money Call Option Prices

Table II shows the convergence of at-the-money European call option prices when the number of variances, K,

carried at each node in the lattice increases. The other parameters (rf = 0, λ = 0 , β0
66 575 10= × −. , β1 0 90= . ,

β2 0 04= . , c = 0 , S0 100= , h0 0 0001096= .  and γ = h0 ) are the same as for Table 1, with n=5. The bottom two

rows, ∞L  and ∞U , show the 95 percent confidence intervals for the true prices based on 500,000 simulations. As K

increases, the prices converge to their true values. The table shows that for very short term contracts, K=2 may
suffice. However, for contracts exceeding 10 days, more points are required.

Number of
Variances

Maturity of Option (Days)

K 5 10 30 60 100 150 200 250 300

2 0.926 1.303 2.213 3.085 3.957 4.831 5.570 6.222 6.811

3 0.927 1.307 2.246 3.155 4.061 4.967 5.731 6.404 7.013

4 0.927 1.308 2.257 3.181 4.100 5.018 5.791 6.473 7.089

5 0.928 1.309 2.261 3.192 4.118 5.042 5.821 6.507 7.127

10 0.927 1.309 2.267 3.206 4.141 5.073 5.858 6.550 7.174

20 0.927 1.309 2.268 3.210 4.148 5.082 5.869 6.562 7.188

40 0.927 1.310 2.268 3.211 4.149 5.083 5.871 6.564 7.190

∞L 0.923 1.306 2.257 3.197 4.142 5.074 5.862 6.556 7.164
∞U 0.931 1.317 2.277 3.225 4.179 5.120 5.916 6.617 7.230
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Table III
Call Option Prices For Different Strikes

Table III compares the prices of European call options for different strike prices with 95 percent confidence
intervals from simulations with 500,000 replications. The other parameters (rf = 0, λ = 0 ,

β0
66 575 10= × −. , β1 0 90= . , β2 0 04= . , c = 0 , S0 100= , h0 0 0001096= . , γ = h0  and K=20) are the

same as for Table 1, with n=5. All but two of the lattice prices are within these confidence intervals.

Strike Maturity (Days)

X 5 10 30 50 100

95.0 5.012
(5.008,5.021)

5.086
(5.082,5.100)

5.560
(5.543,5.571)

6.030
(6.009,6.044)

7.028
(7.010,7.056)

97.5 2.665
(2.660,2.671)

2.915
(2.909,2.925)

3.712
(3.696,3.720)

4.316
(4.299,4.329)

5.468
(5.456,5.497)

100.0 0.927
(0.923,0.931)

1.309
(1.306,1.317)

2.268
(2.257,2.277)

2.930
(2.918,2.944)

4.148
(4.142,4.179)

102.5 0.178
(0.177,0.181)

0.439
(0.438,0.444)

1.263
(1.256,1.271)

1.885
(1.876,1.897)

3.069
(3.067,3.100)

105.0 0.018
(0.019,0.020)

0.108
(0.109,0.112)

0.639
(0.635,0.646)

1.148
(1.143,1.159)

2.214
(2.214,2.242)
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Table IV
Convergence of American Put Option Prices

Table IV compares the prices of American at-the-money puts to European
prices, as the order, n, of the multinomial approximation to each day’s
conditional normal distribution increases. For example, when n=2, there are
2n+1=5 points used to approximate the daily conditional normal distribution.

The other parameters (λ = 0 , β0
66 575 10= × −. , β1 0 90= . , β2 0 04= . , c = 0 ,

S0 100= , h0 0 0001096= . , γ = h0  and K=20) are the same as for Table 1,

except that rf = 0 1. . The early exercise premium is expressed as a percentage of

the American option price. The table shows that American prices stabilize very
quickly, especially when the number of days is greater than 10.

Maturity
(Days) n

American
Price

European
Price

Early Exercise
Premium

(% of American)

1 0.563 0.563 0
2 0.540 0.540 0

2 3 0.546 0.546 0
4 0.548 0.548 0
5 0.556 0.556 0

1 1.216 1.194 1.83
10 2 1.187 1.168 1.58

3 1.193 1.176 1.43
4 1.190 1.173 1.43
5 1.192 1.175 1.40

1 2.419 2.294 5.19
2 2.400 2.281 4.97

50 3 2.399 2.281 4.94
4 2.398 2.281 4.92
5 2.398 2.281 4.92

1 3.168 2.899 8.50
2 3.146 2.884 8.35

100 3 3.144 2.882 8.33
4 3.143 2.882 8.32
5 3.143 2.882 8.32
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Table V
Convergence of Generalized GARCH Option Prices

Table V shows the convergence of at-the-money European call option prices as the number of trading

periods per day, m, increases. The other parameters (rf = 0, λ = 0 , β0
66 575 10= × −. , β1 0 90= . ,

β2 0 04= . , c = 0 , S0 100= , h0 0 0001096= . , γ = h0  and K=20) are the same as for Table 1, with n=1.

Over each trading period, the price can move to one of three values. The last column, Diffusion Limit,
shows 95 percent confidence intervals for the true prices based on 100,000 simulations of the limiting
bivariate diffusion model with m=48. The table clearly shows that for contracts with maturities greater than
20 days, m=1 will suffice for the lattice.

Maturity
(Days)

Trading Periods per Day
(m)

Diffusion
Limit

1 2 3 4 5

2 0.589 0.617 0.603 0.598 0.595 0.580, 0.591

5 0.909 0.939 0.932 0.933 0.931 0.922, 0.939

10 1.312 1.318 1.315 1.315 1.315 1.313, 1.338

20 1.857 1.859 1.860 1.860 1.860 1.854, 1.890

50 2.942 2.943 2.943 2.942 2.942 2.932, 2.989

100 4.165 4.165 4.165 4.164 4.163 4.149, 4.231

200 5.893 5.893 5.893 5.893 5.893 5.804, 5.922
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Table VI
 Pricing Options Under Bivariate Diffusions

Table VI compares the prices of European call options for different strike prices with 95 percent
confidence intervals from 100,000 simulations of the limiting bivariate diffusion model. The

parameters (rf = 0, λ = 0 , β0
66 575 10= × −. , β1 0 90= . , β2 0 04= . , c = 0 , S0 100= ,

h0 0 0001096= . , γ = h0  and K=20) are the same as for Table 1, with n=1 and m=4 (m=1 for

maturities of 20 days or longer). That is over each quarter-day (day for maturities of 20 days or
longer), a three point approximation is made to the conditional normal distribution. The lattice
algorithm works well, even in this case, since every price falls within its corresponding confidence
interval.

Maturity
(Days)

Strike

95.0 97.5 100.0 102.5 105.0

2 5.000
(5.000, 5.000)

2.523
(2.507, 2.525)

0.598
(0.580, 0.591)

0.028
(0.028, 0.031)

0.000
(0.000, 0.000)

5 5.011
(5.000, 5.013)

2.665
(2.642, 2.668)

0.933
(0.922, 0.939)

0.178
(0.174, 0.182)

0.016
(0.016, 0.018)

10 5.085
(5.061, 5.101)

2.917
(2.902, 2.936)

1.315
(1.313, 1.338)

0.443
(0.440, 0.455)

0.107
(0.104, 0.111)

20 5.314
(5.294, 5.347)

3.361
(3.339, 3.385)

1.857
(1.854, 1.890)

0.900
(0.890, 0.915)

0.371
(0.363, 0.379)

50 6.039
(6.025, 6.102)

4.332
(4.316, 4.383)

2.942
(2.932, 2.989)

1.901
(1.888, 1.935)

1.160
(1.150, 1.186)

100 7.043
(7.019, 7.121)

5.489
(5.465, 5.557)

4.165
(4.149, 4.231)

3.090
(3.069, 3.141)

2.232
(2.213, 2.274)

200 8.589
(8.478, 8.617)

7.158
(7.055, 7.184)

5.893
(5.804, 5.922)

4.803
(4.718, 4.826)

3.870
(3.790, 3.888)
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Table VII
Some Generalized GARCH Models and their Diffusion Limits

Table VII shows some of the generalized GARCH models, and their diffusion limits, for which the lattice can
compute option prices under the appropriate risk neutralized measure. For the GARCH models, υt+1  is the

univariate innovation driving both the current period’s asset price and the conditional variance for next period’s
price. The corresponding Wiener process driving the asset price in the diffusion limit is dW t1( ), which is

independent of the other Wiener process, dW t2( ) , driving volatility. (See Duan (1997,1996b) for further details.)

References are given where a model nests, as a special case, a specification used in the literature.

Generalized GARCH Model Stochastic Volatility Diffusion Limit

Linear: Bollerslev (1986)
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Nonlinear Asymmetric: Engle and Ng (1993)
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Exponential: Nelson (1991)
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