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Abstract

This paper develops a simple model for pricing interest rate options when the volatility structure of

forward rates is humped. Analytical solutions are developed for European claims and e±cient algo-

rithms exist for pricing American options. The interest rate claims are priced in the Heath-Jarrow-

Morton paradigm, and hence incorporate full information on the term structure. The structure of

volatilities is captured without using time varying parameters. As a result, the volatility structure is

stationary. It is not possible to have all the above properties hold in a Heath Jarrow Morton model

with a single state variable. It is shown that the full dynamics of the term structure is captured

by a three state Markovian system. Caplet data is used to establish that the volatility hump is an

important feature to capture.

Keywords Interest Rate Claims, Volatility Humps.
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Heath, Jarrow and Morton (1992) (hereafter HJM) have shown that the price of interest rate

derivatives is fully determined by the volatility structure of forward rates. For rather general volatil-

ity structures, the dynamics of the term structure may be path dependent, a ¯nite Markovian

representation may not be possible, and pricing claims may become di±cult. As a result, attention

has focused on identifying restrictions on volatilities that lead to simple path independent and/or

Markovian models of the term structure. For example, Caverhill (1994) identī es conditions that

lead to ¯nite state Markovian Gaussian models, and Ritchken and Sankarasubramanian (1995) pro-

vide conditions that lead to Markovian representations in which the volatility of all forward and

spot rate depends on the level of the short term interest rate. When specī c structures are assumed,

simple algorithms for pricing claims can be developed. In the model building process, then, trade o®s

exist with more complexity in the volatility structure allowed at the cost of increased computational

e®ort.

Empirical research suggests that the volatilities of forward rates may depend on their maturities.

Several researchers report a hump in the volatility structure that peaks at around the two year

maturity.1 Introducing a volatility structure that is humped into the HJM paradigm is not that

trivial. In particular, one of the simplest HJM models is the Gaussian Vasicek model, in which the

volatilities decline exponentially with their maturity. Extending this model to capture a volatility

hump can be accomplished at the expense of creating additional state variables. The question that

naturally arises is whether the additional complexity of capturing this hump is warranted. This

article addresses this issue.

The ¯rst goal of this article is to establish a simple model of the term structure that can capture

a volatility hump. The second goal is to perform empirical tests on the model and to establish

whether permitting a volatility hump is important. The model that we establish incorporates all

current information in the yield curve and has the following properties. First, simple analytical

solutions are available for most European claims. Second, the volatility of forward rates is humped,

consistent with empirical evidence. Third, the volatility structure of forward rates is a stationary

function, in that it only depends on the maturity of the rate.2 Fourth, the model includes, as a

special case, the generalized Vasicek models developed by Jamshidian (1989), HJM (1992) and Hull

and White (1990), as well as the continuous time Ho-Lee (1988) model. Fifth, the model permits the

e±cient computation of American interest rate claims. Finally, the single factor models we present

readily generalize to multifactor models.

The need for simple analytical solutions for European claims cannot be understated. In partic-

1A review of some empirical results is deferred to a later section.
2In particular, there are no time varying parameters in the model.
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ular, an important property of any derivatives model is that it not only prices discount bonds at

their observable values, but it also produces theoretical prices for an array of liquid derivatives that

closely match their observable values. Typically, the calibration procedure is accomplished using the

discount function as well as the prices of liquid caps and swaption contracts. In the HJM paradigm,

all discount bonds will be automatically priced correctly. The parameters of the volatility structure,

however, need to be determined so as to closely price a set of interest rate derivative contracts. This

is usually accomplished by minimizing the sum of squared residuals. With many parameters, and

with a highly non linear objective function, the optimization problem is non trivial, and multiple

calls to valuation routines for the individual contracts arise. If these individual routines are not

e±cient, then implied estimation of the parameters becomes di±cult. As a result, an important

criterion for successful implementation is the ease in which the model's parameters can be readily

calibrated. Since our simple model can easily be calibrated, it is likely to be more successful than a

more complex model which might capture more precisely the volatility structure, but at the expense

of forgoing analytical solutions and hence incurring costly calibrations.

The latter portion of the paper establishes the bene¯ts of incorporating a volatility hump in a

Generalized Vasicek model. Towards this goal, we perform empirical tests, using data on caplets that

span the maturity spectrum, to establish whether incorporating a hump in the volatility structure

is important.

The article proceeds as follows. In the next section we review the pricing mechanism in the

HJM paradigm as well as the empirical evidence regarding the volatility hump. In section 2 we

develop specī c models for pricing European claims. We construct a two and three state-variable

model, which includes as a special case the one state generalized Vasicek model. Analytical solutions

for European options are provided. In section 3 we provide multivariate extensions to the model

and we compare our one factor- three state variable model to a two factor-two state variable model

developed by Hull and White (1994). In section 4 we develop e±cient algorithms for pricing American

claims. The algorithms are similar in spirit to those of Li, Ritchken and Sankarasubramanian (1995).

Their model involves one source of uncertainty, yet requires two state variables. Here, we also have

one source of uncertainty. However, up to three state variables are necessary to fully capture the

dynamics of the term structure. By allowing these additional state variables to impact the yield

curve provides a rich family of alternative models. We illustrate the convergence behavior of our

algorithms. In section 5 we perform an empirical study on the model using caplet data. We ¯nd

strong empirical support for the humped volatility structure of forward rates. In particular, we show

that the Generalized Vasicek model is dominated by a model that permits a hump in the volatility
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structure. The stability of the parameter estimates over time is examined, and the maturity of the

peak of the volatility is shown to be remarkably stable. Section 6 summarizes our ¯ndings and

suggests directions for future research.

1 Pricing Mechanisms for Derivatives

Let f (x; T) be the forward rate at date x for the instantaneous rate beginning at date T . Forward

rates are assumed to follow a di®usion process of the form

df (x; T ) = ¹f (x; T )dt+ ¾f (x; T)dw(x) (1)

with the forward rate function f (0; ²) initialized to its currently observable value. Here ¹f(x; T ) and

¾f(x; T ) are the drift and volatility parameters which could depend on the level of the forward rate

itself, and dw(x) is the standard Wiener increment. HJM (1992) have shown that to avoid riskless

arbitrage the drift term must be linked to the volatility term by:

¹f (x; T ) = ¾f (x; T )[̧ (x) + ¾p(x; T)] (2)

where ¾p(x; T) =
R T
x
¾f (x; v)dv and ¸(x) is the market price of interest rate risk, which is indepen-

dent of the maturity date T . Substituting equation (2) into (1) and integrating leads to

f (x; T) = f (0; T) +

Z x

0

¾f (v;T )[¾p(v; T) + ¸(v)]dv +

Z x

0

¾f (v; T )dw(v) (3)

Now consider the pricing of an European claim that promises the holder a payout of g(t) at date t.

Here g(t) is a cash °ow fully determined by the entire term structure at that date. The arbitrage

free price of this claim at date 0 is given by:

g(0) = E0[g(t)]P (0; t) (4)

where P (0; t) is the price at date 0 of a bond that pays $1 at date T . This expectation is computed

under the forward risk adjusted process, which loosely speaking, is obtained by pretending ¸(v) =

¡¾p(v; t) in equation (2). With this substitution, equation (3) can be written as:

f (t; T) = f (0; T) + h1(t; T ) +

Z t

0

¾p(v; T )dw(v) (5)

where

h1(t;T ) =

Z t

0

g1(v; t; T )dv

g1(v; t;T ) = ¾f (v; T)

Z T

t

¾f (v; s)ds

3



For pricing European claims it is usually easier to work under the forward risk adjusted process.

In contrast, for pricing American claims, one usually proceeds by valuing under the risk neutralized

process. In particular, as an alternative to equation (4), we have:

g(0) = E0[e
¡
R t
0
r(s)ds

g(t)] (6)

The risk neutralized process can be viewed as a process where the market price of risk at date v is

taken to be 0. Under this process, equation (3) reduces to

f (t; T) = f (0; T) + h2(t; T ) +

Z t

0

¾p(v; T )dw(v) (7)

where

h2(t;T ) =

Z t

0

g2(v; T)dv

g2(v;T ) = ¾f (v; T)¾p(v; T )

From a valuation perspective, the HJM paradigm provides a framework where, given an initial

term structure, the pricing mechanism can proceed once the volatility structure of forward rates is

specī ed. The simplest volatility structure in the HJM paradigm is the constant volatility structure

given as ¾f(v;T ) = ¾: This structure assumes all rates respond to a shock in the same way. Cursory

empirical evidence suggests that volatilities of forward rates depend on their maturities. HJM (1993)

and Jamshidian (1989) consider an exponentially dampened structure

¾f (t; T ) = ¾e¡·(T¡t):

This structure, referred to as the Generalized Vasicek or GV structure, implies that distant forward

rates are much less volatile than near forward rates. If volatilities have this structure, then it can be

shown that the entire dynamics of the term structure can be characterized by a single state variable,

which could be the instantaneous spot rate, r(t) = f (t; t), and that bond prices can be represented

as

P (t; T ) =
P (0; T )

P (0; t)
e¡¯(t;T )[r(t)¡f(0;t)]¡ 1

2¯
2(t;T)Á(t) (8)

where

¯ (t; T ) =
1

·
[1 ¡ e¡·(T¡t)]

Á(t) =
¾2

2·
[1 ¡ e¡2·t ]:

Ritchken and Sankarasubramanian (1995) show that if volatilities are not of this form then there is

no single state variable HJM representation for the dynamics of the term structure.
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There appears to be very little empirical support for an exponentially dampened forward rate

volatility structure. Several researchers report a hump in the volatility structure that peaks at around

the two year maturity. Litterman and Scheinkman (1991) use a principal component analysis of

interest movements, to reveal a humped volatility form. Heath, Jarrow Morton and Spindel (1992)

provide cursory evidence of such a hump. Amin and Morton (1994) use Eurodollar futures and

options and obtain negative estimates of · over the short end of the curve. Since negative estimates

over the entire maturity spectrum are not plausible, they argue that there is a hump in the structure.

Goncalves and Issler (1996) estimate the term structure of volatility using a simple GV model. Their

historical analysis of forward rates also reveals a hump.3 In addition to not providing for a volatility

hump, GV models have the undesirable property that volatilities of yields are independent of their

levels. As a result, interest rates can go negative. These problems have lead researchers to consider

richer classes of volatility structures in which volatilities are linked directly or indirectly to the level

of the term structure.

While the HJM paradigm permits the volatility structure to be quite general, unless constraints

are imposed on the family of volatilities, a ¯nite state representation of the term structure is not

permissible. Ritchken and Sankarasubramanian (1995) characterize the set of restrictions on volatil-

ities that permit a two state variable representation. In particular they show that if the volatility

has the form

¾f (t; T) = ¾r(t)k(t; T )

where ¾r(t) is a function that depends on all information up to date t, and k(t; T ) is a deterministic

function satisfying the following semi-group property:

k(t; T ) = k(t; u)k(u; T) for t · u · T

k(u; u) = 1

then, conditional on knowing the initial term structure, knowledge of any two points on the term

structure at date t is su±cient to characterize the full yield curve at that date. The class of volatility

structures in this family is quite large. However, no analytical solutions have been derived for

European claims. As a result, calibration issues remain, which inhibit the easy implementation of

these models.

Clearly there are disadvantages in maintaining a simple exponentially dampened Vasicek volatil-

ity structure; however, there are also signi¯cant di±culties in obtaining simple solutions for interest

3Not all studies indicate the existence of a hump. For example, Bliss and Ritchken (1995) use term structure data

alone and ¯nd that relative to the volatility at the short end, forward rate volatilities appear to decline with maturity.
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rate claims when forward rate volatilities are allowed to depend on forward rate levels. A compro-

mise is to investigate Generalized Vasicek models where the number of state variables exceed the

number of sources of uncertainty. The volatility structure of these types of models can be made

to take on shapes other than the exponentially dampened structure. The model that we examine

next belongs to this generalized family of models. In particular, we propose a model that allows

volatilities of forward rates to have a humped term structure.

2 Option Pricing with a Volatility Hump

Assume the volatility structure is given by:

¾f (x; T) = [a0 + a1(T ¡ x)]e¡·(T¡x) + b0 (9)

This volatility function reduces to the GV structure when a1 = b0 = 0. Bhar and Chiarella (1995)

have considered similar structures for volatilities. Indeed, they show that a ¯nite state Markov

representation is permissible for the term structure if the coe±cient of the exponentially dampened

term is a ¯nite degree polynomial in the maturity T ¡ x. Figure 1 shows a typical curve, in which

the peak occurs around the two year point.

[Figure 1 Here]

For 0 · x · t, the volatility structure can be expressed as:

¾f (x; T) = d0(t; T ) + d1(t; T)e¡·(t¡x) + d2(t; T)[t ¡ x]e¡·(t¡x) (10)

where

d0(t;T ) = b0

d1(t;T ) = [a0 + a1(T ¡ t)]e¡·(T¡t)

d2(t;T ) = a1e
¡·(T¡t)

Substituting equation (10) into equation (5) yields:

f(t; T ) = f (0;T ) + h1(t; T ) +
2X

i=0

di(t; T)Wi(t) (11)

where

W0(t) =

Z t

0

dw(v) (12)
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W1(t) =

Z t

0

e¡·(t¡v)dw(v) (13)

W2(t) =

Z t

0

(t ¡ v)e¡·(t¡v)dw(v) (14)

and the exact expression for h1(t; T) is provided in the appendix.

Proposition 1 If the volatility structure is given by equation (9), and the dynamics of the forward

rates are given by equation(1), then, under the FRA process, bond prices at date t are linked to prices

at date 0 through three state variables, W0(t), W1(t) and W2(t) as:

P (t; T ) = A(t; T)e¡R(t;T ) (15)

where

A(t; T) =
P (0; T)

P (0; t)
e¡H1(t;T)

R(t; T ) =

2X

i=0

Di(t; T )Wi(t)

and

H1(t; T) =

Z T

t

h1(t; x)dx

D0(t; T) = b0(T ¡ t)

D1(t; T) =
1

·2
[a1 + a0· ¡ (a1·(T ¡ t) + a0·+ a1)e

¡·(T¡t)]

D2(t; T) =
a1

·
[1 ¡ e¡·(T¡t)]

The dynamics of the state variables, W1(t), and W2(t) are:

dW1(t) = ¡·W1(t)dt+ dw(t) (16)

dW2(t) = [W1(t)¡ ·W2(t)]dt (17)

Proof: See Appendix.

When b0 = 0, D0(t;T ) = 0, and the number of state variables reduces to 2. Further, when

a1 = b0 = 0, then, the number of state variables reduces to 1, the GV volatility structure is

recovered and the bond pricing equation reduces to equation (8).

Under the FRA process, viewed from date 0, the bond price, P (t; T), has a lognormal distribution.

In particular, R(t; T) is normal with mean 0 and variance °2(t; T ), where:

°2(t; T ) =

2X

j=0

2X

i=0

Di(t; T)Dj (t; T)Cov0(Wi(t); Wj(t)) (18)
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and

V ar0(W0(t)) = t

V ar1(W1(t)) =
1

2·
[1 ¡ e¡2·t ]

V ar2(W2(t)) =
1

4·3
[1 ¡ (1 + 2·t + 2·2t2)e¡2·t ]

Cov0(W0(t); W1(t)) =
1

·
[1 ¡ e¡·t ]

Cov0(W0(t); W2(t)) =
1

·2
[1 ¡ (1 + ·t)e¡·t]

Cov0(W1(t); W2(t)) =
1

4·2
[1 ¡ (1 + 2·t)e¡2·t ]

We now can compute analytical solutions for a large family of European interest rate claims. Propo-

sition 2 provides the solution to an European option on a discount bond.

Proposition 2 If the volatility structure is given by equation (9), then the price of a contract that

provides the holder with the right to buy at date t, a bond that matures at date T , for $X is given

by:

C(0) = P (0; T)N (d1)¡XP (0; t)N (d2) (19)

where

d1 =
log(A(t; T)=X) + °2(t; T)

°(t; T )

d2 = d1 ¡ °(t; T )

and °2(t; T ) is given by equation (18).

Proof: See Appendix.

Notice that when a1 = b0 = 0, the formula reduces to the GV option model of Jamshidian (1989).

It is possible to establish a simple interest rate claim model with one state variable that allows

for a humped volatility structure. Moraledo and Vorst (1997), for example, show how such a model

can be set up when the parameters are time varying. In particular, their model is obtained with

a1 = b0 = 0 and · = ·(t) = ¸¡°=(1 +°t). This model permits the hump, but has the property that

the volatility structure is no longer stationary. That is the volatility does not depend on the maturity

of the forward rate alone. If the volatility structure of forward rates is to be a humped deterministic

function of the maturity of rates, then for an arbitrary initial term structure, it must be the case that

the underlying number of state variables exceeds one. This fact follows from Caverhill (1994)and

Ritchken and Sankarasubramanian (1995), among others.
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3 Multifactor Models

The above analysis readily generalizes to multifactor models. In particular, we could consider models

of the form

df (t; T ) = ¹f (t; T)dt + ¾f1(t; T)dw1(t) + ¾f2(t; T)dw2(t) (20)

where the volatility structures, ¾f1() and ¾f2(), have forms as in equation (9).

Analytical solutions for caplets under this process can be easily derived.

As an example, consider a speci¯c two factor model in this family where:

¾f1(t; T) = a0e
¡·(T¡t)

¾f2(t; T) = b0

E[dw1dw2] = ½dt

This model di®ers from simple two factor GV model, in that the two factors are correlated. Trans-

forming this model, we obtain:

df (t; T ) = ¹f (t; T )dt + (a0e
¡·(T¡t) + ½b0)d»1(t) + (

p
1 ¡ ½2)b0d»2(t) (21)

where d»1 and d»2 are standard independent Wiener increments with E [d»1d»2] = 0. Moreover,

under the forward risk adjusted process,

¹f (x; T ) =
2X

i=1

Z t

0

[¾fi(x; T )

Z T

x

¾fi(x; s)ds]

Now, from equation (21)

f (t; T ) = f (0; T ) + h1(t; T) + d(t;T )Z(t) + ½b0»1(t) +
p

1¡ ½2b0»2(t)

where

d(t; T) = a0e
¡·(x¡t)

Z(t) =

Z T

t

e¡·(t¡x)d»1(x)

h1(t; T) =

Z t

0

¹f(x; T )dx

Further, the bond price can be computed as

P (t; T ) = A(t; T)e¡R(t;T )
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where

A(t; T ) =
P (0; T)

P (0; t)
e¡H1(t;T)

R(t; T ) = D(t; T )Z(t) + ½b0(T ¡ t)»1(t) + (
p

1 ¡ ½2)b0(T ¡ t)»2(t)

H1(t; T ) =

Z T

t

h1(t; x)dx

D(t; T ) =

Z T

t

d(t;x)dx

This two factor model is characterized by three state variables. Similarly to Proposition 2, we

can obtain the price of a contract that provides the holder with the right to buy at date t, a bond

that matures at date T , for $X as:

C(0) = P (0; T)N (d1)¡XP (0; t)N (d2) (22)

where

d1 =
log(A(t; T )=X) + °2(t; T)

°(t; T )

d2 = d1 ¡ °(t; T)

°2(t; T) = V ar(R(t;T ))

Analytical solutions for options on discount bonds can be obtained for the case where both

volatility structures are of the form in equation (9). The general equation has the same form as the

above option equation, except the variance expression in d1 and d2 are di®erent.

Interestingly, by comparing the volatility expressions that di®erentiate a one factor model with

a two factor model, it can be shown that prices of caplets from our two factor model will be very

close to prices from our one factor model. Intuitively, this makes sense, since each caplet has a

single cash °ow, and if volatility for the one factor can explain uncertainty well, then the additional

contribution by the second factor will be small. The observation that improvements in caplet pricing,

when moving from a one factor to a two factor model, might be negligible has also been made by

Rebonato (1996).

An alternative approach for pricing interest rate claims and ensuring a volatility hump, is to

begin with a two factor, two state variable model, where, under the risk neutralized measure, we

have:

dr = [µ(t) + u ¡ ar]dt + ¾1dw1

du = ± [¹µ¡ bu]dt + ¾2dw2

10



where E [dw1dw2] = 0. In this model, the interest rate follows a mean reverting process, whose central

tendency is itself mean reverting. The economic rationale, for such models has been discussed by

Jegadeesh and Pennacchi (1996), Balduzzi, Bertola and Foresi (1993), Hull and White (1994) and

others. In such models, the logarithm of bond prices is a±ne in the state variables. Further, if the

mean reversion and volatility parameters are curtailed the volatility structure for forward rates can

be shown to be stationary and a humped function of maturity. Speci¯cally, for the case where ¹µ = 0,

the volatility structure is:

¾f (t; T) = ¾1e
¡a(T¡t) +

¾2

a ¡ b [e
¡b(T¡t)¡ e¡a(T¡t)]

The forward rate volatility structure, while not identical to our structure, leads to an analytical

solution for option prices on bonds that has the same form as our equation, but with a di®erent

variance expression.

In summary, for the pricing of caplets, our one factor model with up to three state variables

leads to a similar form as a two stochastic driver model with two state variables, as in Hull and

White. The advantages, or disadvantages of beginning with a dynamic of state variables under

a risk neutralized measure, or beginning with a prede¯ned volatility structure for forward rates,

depends largely on the application. Jegadeesh and Pennacchi (1996), for example, set up a general

equilibrium model, where the risk neutralized process is of the form in the above equations. Their

model allows a time series analysis on Eurodollar futures prices to be conducted with the ob jective of

extracting parameter estimates. Of special importance, was the estimation of the central tendency

parameters, which typically display very large standard errors. In contrast, if the orientation is

towards option pricing, then, in the Heath-Jarrow-Morton paradigm, the volatility structure is all

important. Since caplet prices will be especially sensitive to the imposed volatility structure, as a

function of maturity, and less sensitive to the number of stochastic drivers, using caplet information

to understand volatility structures of forward rates is particularly useful. Indeed, in our empirical

section we will use caplet prices to assess the importance of capturing the volatility hump. This is

particularly important since the empirical evidence on the volatility hump is unclear.4

Of course, if the goal is to price swaptions, or other contracts that are especially sensitive to

correlations among forward rates, then a model with two or more stochastic drivers might be useful.

In this case, not only is it important to obtain a useful characterization of the volatility structure

4As discussed earlier, Amin and Morton ¯nd volatility of forward rates to be an increasing function of maturity, but

their analysis is restricted to short term contracts. Goncalves and Issler (1996) ¯nd support for a decreasing volatility,

over longer maturities. Taken together these two studies indicate a hump is present. Bliss and Ritchken (1996),

however, provide some evidence that indicates the hump is not that important.
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of all forward rates, but it also is essential to capture the correlation structure among forward

rates. Given the dynamics of the two mean reverting processes, as above, the volatility structure

of forward rates and their correlation structures come as given outputs. In contrast, in our two

stochastic driver HJM model, as in equation (20), having two volatility structures that contain

additional parameters, permit not only a stationary volatility hump to be ¯tted, but also provides

more °exibility in attaining alternative stationary correlation structures.

4 Pricing American Options Under Humped Volatilities

The advantage of a simple deterministic volatility structure as in equation (9), is that it permits

the development of analytical solutions for many European claims. The resulting expressions have

the same form as their simple GV counterparts, except the volatility expression (°(t; T )) takes on a

more complex form. Analytical solutions for such claims are useful since they reduce the complexity

of the calibration process. Once the parameters are estimated, then lattice based algorithms can be

used to price a variety of American claims and some interest rate exotics. In this section we describe

such an algorithm.

The valuation procedure takes place using the risk neutralized measure. Under this measure the

term structure at date t is given by:

f (t; T) = f (0; T) + h2(t; T ) +

Z t

0

¾p(v; T )dw(v) (23)

and the bond pricing equation is:

P (t; T ) = A(t; T)e¡R(t;T ) (24)

where

A(t; T) =
P (0; T )

P (0; t)
e¡H2(t;T )

R(t; T) =
2X

i=0

Di(t; T )Wi(t)

H2(t; T) =

Z T

t

h2(t; x)dx:

Assume the time interval [0; t] is partitioned into n equal subintervals of width h. A simple binomial

lattice is used to approximate the standard Wiener process. Let W a
0;i approximate the process at

time ih for i = 0; 1; 2; ::::;n, with W a
0;0 = 0. Given W a

0;i = w, the next permissible values are w+
p
h
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and w ¡
p
h, which both occur with probability 0:5. For pricing purposes, the term structure can

be recovered at each node of the lattice if the exact values of the three state variables are given.

Let (W a
1 ; W

a
2 ) be the values of the two state variables at a particular node, where the ¯rst state

variable has value W a
0 . The number of di®erent values for the state variables W a

1 and W a
2 at this

node equals the number of di®erent paths that can be traversed from the originating node to this

point. Rather than keep track of all these values, we follow the basic idea of Li, Ritchken and

Sakarasubramanian (1996) and only keep track of the maximum and minimum values that each of

the two state variables can attain at each node. The range between the maximum and minimum

values is then partitioned into k1 and k2 pieces respectively. We track option prices at the resulting

k1 £ k2 points. Thus at each node in the lattice, a matrix of option values needs to be established.

As the space partition values k1 and k2 increase, and as the number of time increments increase,

the option prices converge to their true theoretical values.

Let C(i; j) be the (i; j)th entry for a price that is to be computed at the node W a
0 = w and

assume W a
1 = y and W a

2 = z. Assume the date is mh say, for some integer m · (n¡1). Given these

two state variables, their successor values at date (m + 1)h can be computed using approximations

to equations (16) and (17). In particular, the two successor nodes are (w+
p
h) and (w¡

p
h) both

of which occur with probability 0:5. The values of the two state variables, obtained using equations

(16) and (17), at these two nodes, are (y¡(·yh)+
p
h; z+(y¡·z)h) and (y¡(·yh)¡

p
h; z+(y¡·z)h)

respectively. If option prices at all successor nodes, for the particular state variables, were available,

then the ¯rst two moments of the true underlying dynamics over the time increment would be

perfectly matched. In this case, convergence in distribution of the discrete time process to the

continuous process is guaranteed. However, option prices at the successor nodes, for the particular

updated state variables, may not be available. By construction, option prices at \surrounding"

states will be available, and interpolation procedures can be used to establish an option price. The

\average" of the option prices computed in both the up state and down state can then be computed,

and the resulting value discounted by the current one period bond price, provides the value of the

option unexercised at the current location. The maximum of this value and the exercised value of

the claim provides the numerical value for C (i; j ). 5

When computing option prices using backward recursion, various interpolation techniques can

5Since the use of an interpolation scheme for the additional state variables can be viewed as giving the increments

a positive variance, the moments of the discretized distribution may not match up exactly with the true distribution.

However, as the number of points between the maximum and minimums at each node increase, that is, as k1 and k2

increase, the moments will converge to their true values. Hence convergence in distribution is guaranteed as k1, k2 ,

and n!1.
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be used to establish the values of the claim in both successor states. Li, Ritchken and Sankarasubra-

manian (1995), show that relatively coarse partitions of the range of the state variable at each node,

combined with simple linear interpolation methods produce satisfactory results for their problem.6

We ¯rst report on the performance of an algorithm for the volatility structure in equation (9)

with a1 = 0. In this case there are only two state variables. Since analytical solutions are available

for European options on bonds, we use these contracts to illustrate the convergence behavior for the

contract as the number of time partitions, n, and as the number of space partitions, k1, increase.

Figure 2 reports the results for the one year at-the-money option, when a simple linear interpolation

method is used.

[Figure 2 Here]

Notice, that for all time partitions, as k1 increases the convergence rate improves. Notice too,

that reasonably accurate results for option prices are obtained for 50 time partitions and about 5

space partitions.7 For small values of k1, and a large number of time periods the option prices

might diverge. The reason for this is that linear interpolation between option prices at each node

in the lattice may consistently overestimate the actual value, when the claim is convex in the state

variable. Increasing the number of time periods may do little to improve the convergence properties.

Convergence, however, is guaranteed to occur when the number of time periods, n increases, and

when the space partition for the additional state variable is re¯ned. Figure 2 clearly shows this

pattern. Namely, when n is large convergence is not guaranteed unless k1 is also large. As k1 and

n increase the prices on the lattice converge to the true theoretical price.

The convergence of option prices improves as k1 increases. For a ¯xed value of k1, the option

prices appear to diverge as the number of time increments increases con¯rming the problems with

linear interpolation. Since our contract has payouts that are convex in this state variable, quadratic

interpolation should improve convergence. Table 1 compares the convergence rate of prices for

various space partitions using a linear interpolation scheme, to the case where only 3 points are used

to approximate the state variable at each node, but a quadratic approximation is invoked. As can

be seen, the quadratic approximation works very e®ectively, producing accurate results even for a

small number of time partitions.

[Table 1 Here]

6For example, they show that partitions of size 10 to 20 produce prices of options on bonds that are practically

indistinguishable.
7Similar results hold over the full range of parameters for the volatility structure.
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Figure 3 shows the convergence of option prices to the analytical solution for the general volatility

structure with a1 6= 0. In Figure 3 the partition sizes (k1 and k2) for the two state variables W1(t)

and W2(t) are taken to be equal.

[Figure 3 Here]

Table 2 compares the e®ects of using a quadratic approximation scheme with linear interpolation.

Since the payouts are convex in the two state variables, the quadratic interpolation scheme should

be e®ective. Using just three points for each state variable at each node appears to su±ce. These

results are quite robust to the parameter values for the volatility structure.

[Table 2 Here]

The prices for American interest rate claims, such as options on coupon bonds, display almost

identical convergence properties and hence are not reported.

5 Empirical Tests

In this section we provide some preliminary empirical tests on the GGV model. Our goal is to

establish if there is support for the one factor GGV model and to establish whether the model can

reduce out of sample biases that exist in applying the simple GV model.

We obtained a set of daily caplet data, and zero curves from Bears Stern. The data consist of bid

and ask prices of at-the-money caplets with maturities ranging from 1 year to 9 years in increments

of 1 year. Each caplet is on a 3 month LIBOR rate. The prices are reported in conventional Black

volatility form. Speci¯cally, the Black volatility of a caplet with strike X, and maturity t, on a rate

with length ¢t years, is the volatility, ¾f , say, that arises under the assumption that the forward

rate, corresponding to the caplet period, ¢t, has a lognormal distribution. The price is given by:8

C0 =
P (0; t)

1 + f0[t; t + ¢t]¢t
[f0[t; t + ¢t ]N (d1)¡XN (d2)]

where

d1 =
log[f0[t; t + ¢t]=X ] + t¾2

f=2

¾
p
t

d2 = d1 ¡ ¾f
p
t

8A typical quoted Black volatility of 15% for example, should not be confused with the volatility of the forward

rate in our HJM models. The Black model has volatility in a proportional form, whereas the Vasicek models have

volatility in absolute form.
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To translate Black volatilities into actual prices requires the discount rates for the appropriate

maturities. The discount function for each day, computed using the par swap rate curve was also

supplied. 10 weeks of data were provided.

In our analysis, we assume all the parameters remain constant over a week. Then we use all

9 £ 5 = 45 option prices, to infer out the set of estimates that minimize the sum of squared error.9

We repeat this analysis, separately for each of the 10 successive weeks. Table 3 reports the estimates

of the parameters for each of the 10 optimizations for the GV and the GGV models.

[Table 3 Here]

For the GV model, the volatility and mean reversion estimates are fairly stable over the 10 weeks.

For the GGV model, in addition to the estimates of the volatility parameters, we also report the

forward rate maturity with the maximum volatility. This maturity is consistently close to 1:3 years,

and the magnitude of the volatility there is surprisingly stable at a value near 0:015. 10 In all 10

runs of the GGV model, the null hypothesis that the parameter values a1 = b0 = 0 is rejected at

the 5% level of signi¯cance. That is, the inclusion of the volatility hump, beyond the usual GV

exponentially dampened structure, adds signi¯cantly to the model.

Table 4 summarizes the in-sample residuals for the GV and GGV models. In each of the 10

weekly estimations for both models, 5 residuals are available for each maturity. This gives a total

of 50 residuals. For each maturity, the number of positive and negative residuals are indicated, as

well as their average and standard deviation.

[Table 4 Here]

The table immediately reveals the large biases in the GV model. All the residuals in the ¯rst

year are negative, while all the residuals in years 2 ¡ 4 are positive. The large bias continues over

all maturities. Table 4 also reports the results for the GGV model. Relative to the GV model, a

signi¯cant amount of the bias is removed.

The in sample analysis does indicate that a GV model is not capable of ¯tting a volatility

structure that has a hump. Table 5 presents a similar analysis of residuals, this time conducted on

out-of-sample data. The estimates of the volatility parameters, derived using the data in a given
9We minimized the sum of squared error of the pricing residuals, in dollars, and in Black implied volatility units.

In both cases, the sets of results were almost identical. As a result, we use the ¯rst objective function, but report all

our residuals in Black volatility form. We do this primarily because the typical bid-ask spread on a caplet is of the

magnitude of 0:5 Black Vols.
10Roughly speaking, this implies that movemnts of 2£ 1:5 = 3% or more in rates in a year are unlikely.
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week, are then used to estimate the option prices for each day of the next week. That is, the volatility

parameters are only updated at the end of a week, using full information on the entire week. The

model is then not recalibrated until the end of the next week. As a result, for the week, we obtain

9 £ 5 = 45 out of sample residuals for each maturity. Table 5 reports the number of positive and

negative residuals as well as their means and standard deviations for each maturity caplet.

[Table 5 Here]

The results are consistent with the results from the in-sample-residuals. In particular, much

of the bias in the GV model is eliminated by the GGV model. The last row of this table reports

the number of times (out of 45) that the absolute value of each GGV residual is smaller than the

absolute value of the GV residual. The superior performance of the GGV model, especially over the

¯rst 5 maturities is evident.

Figures 4a and 4b show the typical plot of the 9 residuals for each of the ¯ve consecutive days

after the estimation was conducted. As can be seen, the simple exponentially dampened structure for

volatilities is not °exible enough to permit pricing to proceed without introducing a large maturity

bias.

[Figures 4a and 4b Here]

The above results provide signi¯cant evidence that the GGV can explain prices of caplets beyond

what is possible with a GV model. Table 6 attempts to establish whether the forecasted GGV prices

of caplets are within typical bid ask spreads and whether the forecasts deteriorate over time. For each

out-of-sample day, we report the distribution of the 9£9 = 81 out of sample residuals. For example,

consider the one year maturity caplet. Of the 81 forecasts made for the Monday prices, 68 were

within 0:25 vols of the actual price, 11 were within 0:5 vols and 2 were larger. The performance of

the forecasts did deteriorate somewhat over the next 4 days. However, even if one did not recalibrate

the model for 1 week, 71 out of the 81 residuals were within 0:5 vols of the actual prices. Since a

typical bid ask spread of a caplet is often between 0:25 and 0:5 vols, residuals of this magnitude are

respectable. The results hold true when broken down by caplet maturity.

[Table 6 Here]

Our preliminary empirical results indicate that a signī cant portion of the bias in the GV model

can be explained by a more °exible handling of the volatility structure. Certainly, the results do
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indicate that the maturity structure of at-the-money caplets can be reasonably well approximated

by the GGV model.

Our ¯nal analysis was to investigate the magnitude of the biases in using the GGV and GV

models for pricing swaptions, which are more sensitive to correlation structures in the forward rates

than the caplet prices. Our data set for this study was based on 50 weeks of data, for which our

above caplet data was a subset. At each date, 25 swaption contracts, with maturities ranging from

one to ¯ve years, and forward maturities ranging from one to ¯ve years were available. A typical

bid-ask spread for a swaption would be about 0:5 of a Black volatility.11

Each week the GV and GGV models were calibrated to the data and the resulting residuals for

all 25 contracts were stored. Figure 5a and 5b show a series of box and whisker plots of the residuals,

for all the 25 contracts spread out across the maturity spectrum. The dashed lines in the exhibit

identify typical bid-ask spreads.

[Figures 5a and 5b Here]

The ¯gures clearly illustrate that the majority of residuals fall in the bid-ask spread. More im-

portantly, the analysis shows that the GGV model removes the biases that exist in the short term

contract prices produced by the GV model.

6 Conclusion

This paper develops a simple model for pricing interest rate options. Analytical solutions are avail-

able for European claims and extremely e±cient algorithms exist for the pricing of American claims

on the lattice. The interest rate claims are priced in the Heath-Jarrow-Morton paradigm, and hence

incorporate full information on the term structure. The volatility structure for forward rates is

humped, and includes as a special case the Generalized Vasicek model. The structure of volatilities

is captured without using time varying parameters. As a result, the volatility structure is station-

ary. It is not possible to have a volatility structure with the above properties and at the same time

capture the term structure dynamics by a single state variable. It is shown that the full dynamics

of the term structure can, however, be captured by a three state Markovian system. As a result,

11Under this Black model, the swap rate is assumed to follow a lognormal process. The Black swaption formula is:

Swaption0 = [P (0; t0)¡P (0; tn)][N(d1)¡N(¡d1)]

where t0 is the expiration date, tn is the terminal date of the underlying swap, d1 = ¾s
p
t0=2, and ¾s is the Black

volatility.
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simple path reconnecting lattices cannot be constructed to price American claims. Nonetheless, we

provide extremely e±cient lattice based algorithms for pricing claims, which rely on carrying small

matrices of information at each node.

Our preliminary empirical analysis provided strong support for the single factor GGV model in

favor over the GV model. Moreover, the GGV model produces somewhat stable parameter estimates,

and was capable of producing out of sample prices that were consistently within reasonable bid ask

spreads. The results indicate that a more thorough empirical study is warranted, where a larger

data set is used covering a wider family of contracts.

In our analysis, we assumed the parameters are time invariant constants. It is possible to allow

the parameters to be time varying. For example, a0 and · could be made functions of time. Then,

with a1 = b0 = 0 the model would reduce to the time varying extended Vasicek model of Hull

and White (1990). With minor modi¯cations, our lattice based algorithm can handle these models.

Using time varying parameters allows us to price caplets more precisely. In particular, with su±cient

free parameters, the in sample sum of squared errors can be reduced to zero. It remains for future

work to access whether the out of sample performance of these models provides use beyond the

model with no time varying parameters. Since the GGV model, with no time varying parameters is

a better speci¯ed model than the GV model, it seems sensible to introduce time varying parameters

into this model, rather than into the GV model.

It also remains for future work to extend these models to handle a larger class of forward rate

volatility structures. As long as the volatility structure is a sum of weighted exponential functions

multiplied by maturity dependent polynomials, then a ¯nite state variable representation is possible.

When the volatility structure of forward rates belongs to the Ritchken-Sankarasubramanian class

the analysis becomes more di±cult. Extensions of our lattice procedure to handle humped volatility

structures within the extended Ritchken Sankarasubramanian class will be of substantial interest.

There are alternative approaches to calibrating interest rate claim models. Pang (1999) shows

how Gaussian random ¯eld models can be approximated easily and accurately by multifactor

Gaussian HJM models. In addition, he shows that the indirect calibration of these HJM mod-

els using Gaussian random ¯eld models as an intermediate step is attractive. It would be interesting

to compare the e®ectiveness of hedges constructed following this methodology, with hedges based

on the above models.
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Appendix

Proof of Proposition 1

By de¯nition of P (t; T ) and equation (11), we can write:

P (t; T ) = e
¡
R
T

t
f(t;x)dx

=
P (0; T )

P (0; t)
e
¡
R
T

t
h1(t;x)dx¡

P2

i=0

R
T

t
di(t;x)dxWi(t)

= A(t; T)e¡R(t;T )

where

A(t; T ) =
P (0; T)

P (0; t)
e¡H1(t;T)

R(t; T ) =

2X

i=0

Z T

t

di(t;x)dxWi(t)

=

2X

i=0

Di(t; T)Wi(t)

and

D0(t; T) =

Z T

t

d0(t; x)dx = b0(T ¡ t)

D1(t; T) =

Z T

t

d1(t; x)dx =
1

·2
[a1 + a0·¡ (a1·(T ¡ t) + a0·+ a1)e

¡·(T¡t)]

D2(t; T) =

Z T

t

d2(t; x)dx =
a1

·
[1¡ e¡·(T¡t)]

H1(t; T) =
R T
t
h1(t; x)dx computing this integral yields

H1(t; T) = b20tT
2=2 + b0T (¡2a1 + 2a1e

·t ¡ a0·+ a0e
·t·¡ a1·t

¡b0e·t·3t2)=(e·t·3)

¡(5a2
1 ¡ 5a2

1e
2·t + 6a0a1· ¡ 6a0a1e

2·t·+ 2a2
0·

2 ¡ 2a2
0e

2·t·2

+6a2
1·t + 4a0a1·

2t¡ 16b0a1e
·t·2t + 16b0a1e

2·t·2t

¡8a0b0e
·t·3t + 8a0b0e

2·t·3t + 2a2
1·

2t2 ¡ 8b0a1e
·t·3t2

¡4b20e
2·t·5t3)=(8e2·t·5)

+(¡5a2
1 + 5a2

1e
2·t ¡ 6a0a1· + 6a0a1e

2·t· ¡ 2a2
0·

2 + 2a2
0e

2·t·2

¡6a2
1e

2·t·t ¡ 4a0a1e
2·t·2t + 2a2

1e
2·t·2t2 ¡ 6a2

1·T + 6a2
1e

2·t·T
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¡4a0a1·
2T + 4a0a1e

2·t·2T ¡ 4a2
1e

2·t·2tT ¡ 2a2
1·

2T 2

+2a2
1e

2·t·2T2)=(8e2·T·5)

+(5a2
1 ¡ 5a2

1e
2·t + 6a0a1· ¡ 6a0a1e

2·t·+ 2a2
0·

2 ¡ 2a2
0e

2·t·2

+3a2
1·t + 3a2

1e
2·t·t + 2a0a1·

2t ¡ 8b0a1e
·t·2t + 2a0a1e

2·t·2t

+8b0a1e
2·t·2t ¡ 4a0b0e

·t·3t + 4a0b0e
2·t·3t¡ 4b0a1e

2·t·3t2

+3a2
1·T ¡ 3a2

1e
2·t·T + 2a0a1·

2T + 8b0a1e
·t·2T ¡ 2a0a1e

2·t·2T

¡8b0a1e
2·t·2T + 4a0b0e

·t·3T ¡ 4a0b0e
2·t·3T + 2a2

1·
2tT

¡4b0a1e
·t·3tT + 8b0a1e

2·t·3tT + 4b0a1e
·t·3T2 ¡ 4b0a1e

2·t·3T2)

=(4e·(t+T )·5)

Proof of Proposition 2

By de¯nition of call option which expires at date t:

C (t) = Max[P (t;T )¡X; 0]

= Max[A(t; T )e¡R(t;T) ¡X; 0]

The expected payo® under the FRA measure at date t is given by:

E0[C (t)] = A(t; T )e°
2 (t;T )=2N (d1)¡ XN (d2)

where

d1 =
log(A(t; T)=X) + °2(t; T)

°(t; T )

d2 = d1 ¡ °(t; T )

and °2(t; T ) = V ar(R(t; T )). From equation (4), we can write:

C (0) = P (0; t)E0[C(t)]

= P (0; t)A(t; T )e°
2 (t;T )=2N (d1)¡ P (0; t)XN (d2)

= P (0; T)e¡H1 (t;T )+°2(t;T)=2N (d1)¡ P (0; t)XN (d2)

= P (0; T)N (d1) ¡ P (0; t)XN (d2)

Note that H1(t; T) = °2(t; T)=2:
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Table 1
Convergence Rate of Options With

Linear and  Quadratic Interpolations*

Linear Quadratic
N k=2 k=3 k=4 k=10 k=20 k=50 k=3

2 7.256 7.256 7.256 7.256 7.256 7.256 7.256
3 8.768 8.768 8.768 8.768 8.768 8.768 8.768
4 7.664 7.651 7.649 7.647 7.647 7.647 7.649
5 8.470 8.470 8.470 8.470 8.470 8.470 8.470

10 7.932 7.908 7.897 7.890 7.889 7.889 7.892
25 8.118 8.118 8.118 8.118 8.118 8.118 8.118
50 8.081 8.046 8.038 8.022 8.016 8.014 8.014
100 8.101 8.063 8.057 8.038 8.032 8.028 8.026
200 8.126 8.078 8.070 8.046 8.040 8.035 8.032
500 8.272 8.153 8.113 8.061 8.047 8.039 8.034

1000 8.506 8.270 8.191 8.086 8.059 8.043 8.034

Exact 8.033 8.033 8.033 8.033 8.033 8.033 8.033

Table 1 shows the convergence rate of  a call option as the number of time partitions, n,  increases. The
maturity of the option is  6 months. The underlying bond is a two year bond. The strike price is set
equal to the current forward price, for delivery in 6 months. The table shows the convergence rate for
various values of k , when linear interpolation procedures are used, and for a quadratic interpolation
scheme. The in itial term structure is given by:

                                                       f t e t( , ) . . .0 0 07 0 02 018= − − .

 The case parameters for the volatility structure are:
 κ = = = =01 0 002 1 0 0 0 003. , . , , .   a a b .

In this case there are two state variables in the model.



Table 2
Convergence Rate of Options With

Linear and  Quadratic Interpolations*

Linear Quadratic
N k=2 k=3 k=4 k=10 k=20 k=50 k=3
2 7.925 7.925 7.925 7.925 7.925 7.925 7.925
3 9.611 9.611 9.611 9.611 9.611 9.611 9.611
4 8.432 8.400 8.396 8.396 8.396 8.396 8.395
5 9.314 9.314 9.314 9.314 9.314 9.314 9.314

10 8.761 8.730 8.713 8.695 8.695 8.695 8.698
25 8.963 8.962 8.962 8.962 8.962 8.962 8.962
50 8.941 8.911 8.897 8.867 8.855 8.850 8.852
100 8.987 8.940 8.921 8.890 8.878 8.868 8.868
200 9.115 8.993 8.957 8.905 8.890 8.880 8.874
500 9.466 9.171 9.073 8.942 8.907 8.888 8.877

1000 10.031 9.459 9.266 9.007 8.938 8.900 8.877
Exact 8.876 8.876 8.876 8.876 8.876 8.876 8.876

*Table 2 shows the convergence rate of  a call option as the number of time partitions, n,  increases.
The maturity of the option is  6 months. The underlying bond is a two year bond. The strike price is set
equal to the current forward price, for delivery in 6 months. The table shows the convergence rate for
various values of k , when linear interpolation procedures are used, and for a quadratic interpolation
scheme. The in itial term structure is given by:

                                                       f t e t( , ) . . .0 0 07 0 02 018= − − .

 The case parameters for the volatility structure are:
 κ = = = =01 0 002 1 0 0025 0 0003. , . , . , .   a a b .

In this case there are three state variables in the model



Table 3
Weekly Estimates of Parameters*

GV Estimates                   GGV Estimates
week a0 κ a0 a1 a2 κ Hump Max. Vol.

1 0.0133 0.0346 -0.0221 0.0410 0.0100 1.3087 1.3034 0.0157
2 0.0129 0.0282 -0.0203 0.0363 0.0101 1.2647 1.3497 0.0153
3 0.0130 0.0263 -0.0230 0.0401 0.0104 1.3394 1.3193 0.0155
4 0.0131 0.0239 -0.0230 0.0400 0.0107 1.3679 1.3054 0.0156
5 0.0131 0.0226 -0.0328 0.0535 0.0109 1.5416 1.2627 0.0158
6 0.0131 0.0201 -0.0308 0.0506 0.0111 1.5326 1.2612 0.0158
7 0.0132 0.0259 -0.0273 0.0470 0.0107 1.4548 1.2683 0.0158
8 0.0130 0.0265 -0.0271 0.0468 0.0105 1.4697 1.2579 0.0156
9 0.0130 0.0226 -0.0232 0.0387 0.0105 1.3007 1.3695 0.0155

10 0.0131 0.0231 -0.0216 0.0373 0.0106 1.3095 1.3439 0.0155

*Table 3 shows the implied estimates of the forward rate volatility parameters in each of 10
successive weeks. Each estimate is based on 45 caplet prices spanning the maturity spec-
trum.



Table 4
In-Sample Residual Analysis*

Model Caplet
Maturity 1 2 3 4 5 6 7 8 9

GV positive   0* 50* 50* 50* 48*  17   3* 2* 14*
negative 50 0 0 0 2 33 47 48 36
average -3.330*  0.763*  0.684*  0.455*  0.269* -0.087* -0.178* -0.206* -0.094*
s.d.  0.290  0.165  0.164  0.155  0.150  0.200  0.132  0.140  0.141

GGV positive 23 37* 9* 32 42* 21 22 19 32
negative 27 13 41 18 8 29 28 31 18
average -0.007  0.055* -0.124*  0.021  0.137* -0.038 -0.041* -0.046*  0.043*
s.d.  0.177  0.170  0.170  0.150  0.144  0.194  0.132  0.135  0.134

*Table 4 shows the in-sample residuals by caplet maturity. For example, the GV model pro-
duce 48 positive residuals and two negative residuals for the 5 year maturity caplet. The
starred values indicate the proportions (means) that were significantly different from one half
(zero). All tests were done at 0.5% level of significance.



Table 5
Out-Of-Sample Residual Analysis+

Model Maturity 1 2 3 4 5 6 7 8 9

GV positive 0* 44* 44* 43* 38* 24 14* 17 24
negative 45 1 1 2 7 21 31 28 21
average -3.363*  0.760*  0.700*  0.480*  0.298* -0.044 -0.130* -0.138* -0.030
s.d.  0.347  0.247  0.250  0.242  0.244  0.304  0.236  0.239  0.246

GGV positive 25 26 16 30 35* 26 26 27 30
negative 20 19 29 15 10 19 19 18 15
Average -0.037  0.038 -0.111*  0.048  0.168*  0.007  0.008  0.017  0.101*
s.d.  0.406  0.275  0.247  0.227  0.231  0.301  0.234  0.239  0.252

GV Wins++ 0 3 6 6 9 23 20 21 27
GGV Wins 45* 42* 39* 39* 36* 22 25 24 18
Number  of Trials 45 45 45 45 45 45 45 45 45

+ Table 5 shows the out-of-sample residuals by caplet maturity. For example, the GV model
produces 38 positive residuals and 7 negative residuals for the 5 year caplet. The starred
values indicate the proportions (means) that were significantly different from one half (zero).
All test were done at 0.5% level of significance.

++ GV wins if the absolute value of the residual is smaller than the absolute value of the cor-
responding GGV model. Otherwise GGV wins.









Figure 4
Residual Plots

(a) Plot of Daily Residuals For A Given Week
(GV Model, Out-Of-Sample) *
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(b) Plot of Daily Residuals For A Given Week
 (GGV Model, Out-Of-Sample) *
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*This figure shows the residual (in Black vol form) for each caplet maturity for each day in a typical
week. Figure 4a shows the residuals for the GV model while figure 4b shows the residuals for the
GGV model.



Figure 5
Boxplots Of Residuals From In-sample Fits*

.

* Figure 5  show the boxplots of residuals from the in-sample fits for one-factor GV, and a
one-factor GGV respectively. Each plot is based on the median, quartiles, and outliers of 50
swaption contracts. The box represents the interquartile range that contains the 50% of val-
ues. The whiskers are lines that extend from the box to the highest and lowest values, ex-
cluding outliers. A line across the box indicates the median. The “x” means outliers. Also, we
plot the bid-ask spreads with dashed  lines. In most cases, the boxes fall in the bid-ask
spreads. A S2XS1 contract refers to a two year swaption, on a one year swap.
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(b) One-factor GGV, in-sample
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