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Measures of Price

Sensitivity 1

This chapter reviews the factors that cause bond prices to be volatile. The
Macaulay measure of duration and modified duration are described. This lat-
ter measure captures the exposure of a bond to interest rate rmoves of a certain
kind. Immunization strategies based on duration matching and duration-
convexity matching are presented. The limitations of these approaches are
discussed. Measures of risk due to a twisting term structure are investigated.
The basic measures of duration, convexity and twist risk are helpful in char-
acterizing risk exposures.

For most of this chapter we assume the initial yield curve is flat. That is,
the yields to maturity are the same for all maturities. We also assume that
when unanticipated information arrives causing the yield curve to change, the
change is the same for all maturities. Hence yield curves remain flat, and just
move up and down, depending on information. While this assumption is very
unrealistic it provides a start for our analysis. Later on in this chapter we will
allow the initial yield curve to be arbitrary, but we will assume that all shocks
to the yield curve are the same. In this case the yield curve never changes its
basic shape, although it again moves up and down as information arrives. If
non parallel shocks, such as twists occur, then our measures of risk need to be
reassessed. In future chapters we will consider alternative risk measures that
can handle alternative types of shocks to the yield curve.

The purpose of this chapter is
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162 CHAPTER 8: MEASURES OF PRICE SENSITIVITY 1

• To describe measures of duration and convexity in regard to bond price
volatility,

• To discuss the use of duration and convexity measures in imunization
strategies,

• To discuss other measures of interest rate sensitivity, including the dollar
value of a basis point shock, and

• To provide the first step in establishing a framework for interest rate
risk management.

9.1 PRICE-YIELD RELATIONSHIPS

Changes in the yield curve tend to affect the price of some fixed-income secu-
rities more than others. The sensitivity of bond prices to interest rate change
depends on many factors, including current yields and yield chages, time to
maturity, and coupon size.

Effect of Yield Change

Figure 9.1 shows the typical relationship between the price of a coupon bond
and the yield to maturity.

Assume the coupon is 10% per year paid semiannually, and that the bond
has ten years to maturity. If the yield on the bond was 10%, then the bond
would be priced at its par value of $100. If yields were zero, then there is
no time value for money, and the value of the bond would equal the value
of all the cash flows, namely, 100 + 5 × 20 = $200. Finally, as the yield goes
to infinity, the value of the bond goes to zero. We see, then, that the price
of a bond is convex in the yield. This means that the sensitivity of a bond
to changes in the yield, will depend on the actual level of rates. A one basis
point change in yields, when the yield is low has a much bigger impact on the
price, then when the yield is low.

Due to the convex relationship between prices and yields, for a large de-
crease in yield, the percentage increase in price is greater than the percentage
decrease in price for an equal increase in yield. That is, prices increase at
an increasing rate as yields fall, and decrease at a decreasing rate when rates
rise.



PRICE-YIELD RELATIONSHIPS 163

Fig. 9.1 Price vs Yield on a Coupon Bond

Example

Consider a four-year 8% bond with annual coupons sold at par ($1000) to
yield 8%. If yields fall to 6%, the bond price is

B =
80

1.06
+

80
1.062

+
80

1.063
+

1080
1.064

= $1069.30.

This yield change causes a 6.93% change in the bond price. If interest rates
rise to 10%, the bond price is

B =
80

1.10
+

80
1.102

+
80

1.103
+

1080
1.104

= $936.60.

This yield change causes a 6.34% change in bond price. Thus, a decrease
in yields causes a larger percentage change in the price than an equivalent
increase in yields.
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Effect of Maturity on Bond Prices

Figure 9.2 shows the price yield relationship of two bonds that have the same
coupons and yield, but different maturities. The coupons are 10%. If the yield
were 10%, both bonds would be priced at par. If yields were zero, then the
short term bond with two years to maturity, would be worth 100+5×4 = $120,
while the 10 year bond would be worth 100 + 5 × 20 = $200. As the curve
shows, it appears that the longer term bond is more sensitive to yield changes.

Fig. 9.2 Effect of Maturity on Bond Prices

Indeed, in most cases a given change in yield will cause a longer term bond
to change more in percentage terms than a shorter-term bond. For some
discount bonds, however, the percentage change in prices for a given decrease
in yield to maturity increases with maturity up to a point and then decreases
with maturity once maturity is large enough.

Example

Consider two 5% coupon bonds, both priced to yield 8%. One is a four-
year bond, the second an eight-year bond. Both bonds pay interest annually.
The shorter-term bond is priced at $900.63, while the longer-term bond is
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priced at $827.60. Assume yields rise to 10%. Then, from the bond pricing
equation, the four-year bond will be priced at $841.50, while the eight-year
bond will be priced at $733.40. In percentage terms, the decline in price of
the shorter-term bond is 6.6%, compared to 11.4% for the longer-term bond.

Effect of Coupon Size on Bond Prices

Figure 9.3 compares the the price yield relationship for a 10 year bond that
has coupons of 14% per year with that of an otherwise identical bond with a
coupon of 10%. If the yield was 14%, then the first bond would be priced at
par. Moreover, if the yield were zero, then the price would be 100 + 7× 20 =
$240.

Fig. 9.3 Effect of Coupons on Price

Since this bond has all the features of the lower coupon bond, except that
it pays out more, it has to be the case that its price yield curve lies above
the curve of the lower coupon bond. Which of the above two bonds has the
greater risk? Put another way, given a change in yields, which bond will
change more in percentage terms?
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A given change in yields will cause the price of the lower-coupon bond to
change more in percentage terms. The reason for this follows from the fact
that higher-coupon bonds, having greater cash flows, return a higher propor-
tion of value earlier than lower-coupon bonds. This implies that relatively
less of the high-coupon bond faces the higher compounding associated with
the new discount factor. Therefore, on a relative basis, less price adjustment
is required for the higher-coupon bond.

Example

Consider two four-year annual coupon bonds, both priced to yield 8%.
The first bond has a 5% coupon, the second a 10%. From the bond pricing
equation, their prices are $900.63 and $1066.24, respectively. Assume interest
rates change so that each bond is now priced to yield 10%. Then the new
bond prices are

B1 =
50

1.10
+

50
1.102

+
50

1.103
+

1050
1.104

= $841.50

B2 =
100
1.10

+
100

1.102
+

100
1.103

+
1100
1.104

= $1000

In percentage terms, the 5% coupon bond has changed by (900.63−841.50)/900.63) =
6.6% while the 10% coupon bond has changed by 6.2%. In general, low-coupon
bonds are more sensitive to yield changes than high-coupon bonds.

Bonds trading above their face value (premium bonds) have higher coupon
rates than bonds trading below their face value (discount bonds) and, hence,
all things being equal, will be less sensitive to yield changes.

In summary, the price sensitivity of a coupon bond is affected by its coupon
rate and maturity as well as the current level of yield. In general, for a given
maturity, the lower the coupon rate the greater the volatility, and for a fixed
coupon, the greater the maturity the greater the volatility. To compare the
risk of bonds with different coupons and different maturities a measure called
duration is required. This is considered next.

9.2 MACAULAY DURATION

Since high coupon bonds provide a larger proportion of total cash flow earlier
in the bond’s life than lower coupon bonds with the same maturity, they are
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effectively shorter term instruments. As a result, the actual maturity date of
the bond is not necessarily a good measure of the length of a coupon bond.

To obtain a more meaningful measure it is helpful to first represent the
bond as a portfolio of discount bonds and to measure the maturity of each
cash flow. From the bond pricing equation:

B0 =
m∑

t=1

P (0, t)CFt.

Let wt be the present value contribution of the tth cash flow to the bond
price. Then

wt =
P (0, t)CFt

B0
for t = 1, 2, ...., m

The duration, D, of a bond is just the weighted average number of periods for
cash flows for this bond. That is

D =
m∑

t=1

t × wt

Notice that the greater the time until payments are received, the greater
the duration. If the bond is a discount bond, all payment is deferred to
maturity and the duration equals maturity. For bonds making periodic coupon
payments the early payments will reduce the duration away from the maturity.

Macaulay Duration is affected by changes in the market yield, the coupon
rate and the time to maturity.

Example

Consider a 4-year bond paying a 9% coupon semi-annually and priced to
yield 9%. The cash flows every 6 months are shown below, as well as the
weights and duration calculation.
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Period Cash Flow Present Value Weighted Present Value
t CFt P (0, t)CFt tP (0, t)CFt

1 45 43.06 43.06
2 45 41.21 82.42
3 45 39.43 118.3
4 45 37.74 150.94
5 45 36.11 180.55
6 45 34.56 207.33
7 45 33.07 231.47
6 1045 734.83 5878.63

Total 1000.0 6892.70

The duration is 6892.70/1000 = 6.89 half years, or 3.45 years.

Example

The sensitivities of durations to changes in yield, coupons, and maturity
for a five-year bond that pays 12% annual coupons and yields 12% percent
are shown below.

• All factors being equal, the higher the yield, the lower the duration.

Yield 4 8 12 16 20

Duration 4.2 4.1 4.0 3.7 2.9

• All factors being equal, the higher the coupon, the lower the duration.

Coupon 4 8 12 16 20

Duration 4.5 4.2 4.0 3.9 3.8

• For this bond the duration increases with maturity. This property is
typical, but may not always hold. The exception to this rule will be low
coupon bonds with long maturity.

Maturity 3 5 7 10 30

Duration 2.7 4.0 5.1 6.3 9.0
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Fig. 9.4 Bond Price versus Yields

9.3 DURATION AND BOND PRICE SENSITIVITY

The price of a coupon bond which pays m coupons, can be written as

B =
m∑

t=1

CFt

(1 + y)t

where y is the current yield-to-maturity of the bond per period and CFt is
the cash flow at date t. Figure 9.4 shows the relationship between the bond
price and yield.

The bond price is located at the point P. The slope of the curve at P, dB/dy
can be shown to be:

dB

dy
= −D

B

(1 + y)

If we define modified duration as:

Dm =
D

(1 + y)

then
dB

dy
= −DmB
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or
dB

B
= −Dmdy

That is, the instantaneous percentage change in bond price equals the negative
of modified duration times the change in yield, provided the change in yield
is very small.

If a bond has a modified duration of 4.0 then its market value will change
by 4% when the yield per period changes by 1% or equivalently by 100 basis
points. The higher the modified duration the more exposed the bond is to
interest rate changes.

Example

Consider the previous 4-year bond paying a 9% coupon semi-annually and
priced to yield 9% per year, or 4.5% per six-month period. The duration of
the bond is 6.89 periods. The modified duration is therefore

Dm = D/(1 + y) = 6.89/1.045 = 6.593 periods or 3.297 years.

For a one percentage change in the annual yield to maturity, the percentage
change in the bond price is 3.297%.

9.4 DURATION OF A BOND WITH UNEVEN PAYMENTS

In our analysis we have assumed that the compounding interval equals the
time between successive cash flows. In particular, y is the rate per period. In
most cases, coupon payments are equally spaced, except for the first coupon
payment. Let p be the fraction of a period till the first coupon date. For
example if the time between coupon dates is 6 months, and the time to the
first coupon date is 2 months, then with each period corresponding to a six
month interval, p = 2/6. The Macaulay duration is:

D =
m∑

t=1

(p + t − 1)wt

where
wt =

CFt

(1 + y)p+tB(0)
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is the relative contribution to the bond price made by the present value of the
tth cash flow. It can be shown that the modified duration is given by

Dm = D∗
m − (1 − p)

where D∗
m is the modified duration of the same bond computed with p=1.

Example

To be done

9.5 LINEAR AND QUADRATIC APPROXIMATIONS FOR THE

CHANGE IN A BOND PRICE

Assume the yield changes from y to y + ∆y, where ∆y is small. The bond
price in Exhibit 4 then changes from B(y) (point P) to B(y + ∆y) (point Q).
For ∆y sufficiently small, B(y + ∆y) can be approximated by B′(y + ∆y)
where

B′(y + ∆y) ≈ B(y) +
dB

dy
∆y

which is indicated by point S in the above diagram. Since dB/dy = −DmB,
the above equation can be rewritten as

B′(y + ∆y) ≈ B(y) − DmB(y)∆y

Note that if ∆y is “large” positive or negative, then the linear, or first order
approximation, B′(y + ∆y), is always lower than the actual bond price. The
error is attributable to the curvilinear or convex relationship between bond
prices and yields.

To account for this convexity, we could use a second order approximation,
which takes into consideration how the slope changes as the yield y changes.
For convex relationships, the change in the slope is always increasing. For
example, the slope at the point Q is less negative than the slope at point
P. A second order approximation of B(y + ∆y) which takes into account the
curvilinear relationship is given by

B′′(y + ∆y) ≈ B(y) +
dB

dy
∆y +

1
2

d2B

dy2
(∆y)2
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This can be rewritten as:

B′′(y + ∆y) ≈ B(y) − DmB(y)∆y +
1
2
C(y)B(y)(∆y)2

where

C(y) =
d2B
dy2

B(y)

is defined as the convexity of the bond. In this case, differentiating the bond
price equation two times we obtain:1

C(y) =
m∑

t=1

t(t + 1)CFt

(1 + y)t+2B(y)

The convexity of a straight coupon bond is always positive, implying that
the slope of the price yield equation is increasing (becoming less negative) as
yields increase.

The quadratic approximation differs from the linear approximation by the
last convexity term. Since this term is always positive, the quadratic approx-
imation will always provide higher values than the linear approximation.

For small changes in the yield to maturity, the linear approximation pro-
vides a good proxy for the change in bond price. That is, modified duration is
a useful measure for price volatility. However, when the market perceives in-
terest rate volatility to be high, then the second order approximation is more
precise.

Example

Consider a 5 year bond which pays $80 in coupons semiannually (i.e., $40
per 6 months), has a face value of $1000 and is currently priced to yield 8%
per year. The duration of this bond is 8.435 periods (half years), and the
modified duration is 8.435/1.04 = 8.111 periods. The convexity of the bond
is 80.75 periods squared.

In this example, each period corresponds to a six month interval. To con-
vert the convexity measure to an annual figure requires dividing by the square

1In this calculation, the assumption is made that the cash flows are equally spaced, that is,
p = 0.
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of the number of periods in the year. Hence the annualized convexity in this
example is 80.75/4 = 20.18 years squared.

Table 9.1 shows the actual bond price as computed by the bond pricing
equation for a variety of changes in the annualized yields to maturity and
compares the true prices to the linear and quadratic approximations.

Table 9.1 Linear and Quadratic Approximations of the Bond Pricing Equation

Basis Point Bond Price Linear Error Quadratic Error
Change Approx. Approx.

-400 1179.65 1162.2 17.45 1179.69 -0.039
-200 1085.3 1081.1 4.20 1085.48 -0.177
0 1000 10000 0 1000 0
200 922.78 918.9 3.88 923.26 -0.477
400 852.79 837.80 14.99 855.248 -2.458
800 731.59 675.60 59.99 745.435 -13.845

The following expressions may be useful for computing bond prices, dura-
tion and convexity. The underlying bond pays a coupon of size c for the next
n periods.2 The face value of the bond is F. The yield per period is y. For a
semiannual coupon bond, the yield to maturity is therefore 2y.

B(0) =
c

y

[
1 − 1

(1 + y)n

]
+

F

(1 + y)n

Dm =
c

y2B(0)

[
1 − 1

(1 + y)n

]
+

n(F − c/y)
B(0)(1 + y)n+1

C =
1

B(0)

[
2c

y3
(1 −

1
(1 + y)n

) −
2cn

y2(1 + y)n+1
+

n(n + 1)(F − c/y)
(1 + y)n+2

]

The analytical formulae are established using the fact that a coupon bond
can be viewed as a combination of an annuity that pays c dollars for n periods,
and a discount bond that pays F dollars after n periods. The first term in
the bond pricing equation is the value of the annuity. The modified duration
equation is then obtained by differentiating this formula with respect to y,

2I should generalize this equation with the first fractional period.
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and dividing by the bond price. Similarly, the convexity equation is obtained
by differentiating this bond pricing equation twice with respect to y, and then
dividing by the bond price.

9.6 PRICE VALUE OF A BASIS POINT

A very common risk measure is the sensitivity of the price of a bond to changes
in its yield. The price value of a basis point, PV BP , sometimes called the
dollar value of a basis point, or DV 01, measures the decline in price associated
with a one basis point increase in the yield.

DV 01 = −Slope of Price Yield Curve × 0.01%

or

DV 01 = −dB

dy
× 0.0001

DV01 can be computed directly, by computing the price at the current yield,
adding one basis point to the yield, and recomputing the price.

Example

A five year bond pays 10% coupons semi annually and is priced at par. (y =
0.10). To compute DV01 we reprice the bond at a yield of 0.1001. This leads
to a price of $99.9614. Hence, DV 01 = 100− 99.9614 = $0.0386.

DV01 can also be computed directly from modified duration. In particular,
we have seen that

dB

B
= −Dmdy

Hence
dB = −DmBdy

and
DV 01 = −DmB × 0.0001

Example
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Reconsider our five year bond that pays 10% coupons semi annually and is
priced at par. (y = 0.10). The modified duration of this bond is Dm = 3.86.
Hence DV01 = 100× 3.86× 0.0001 = $0.0386.

9.7 DURATION, CONVEXITY AND DV01 OF A BOND PORTFOLIO

Like the beta value of an equity portfolio, the duration of a bond portfolio,
Dp, is computed as the weighted average of the durations of the individual
bonds:

Dp =
K∑

i=1

αiDi

where K is the number of different bonds and αi is the fraction of portfolio
dollars invested in bond i. Similarly, the convexity of a bond portfolio, Cp ,
is the weighted average of the convexities of the individual bonds.

Cp =
K∑

i=1

αiCi

The DV01 of a portfolio is defined as the change in value resulting from
equal one basis point declines in all yields. Let DV 01i represent the dollar
value of a basis point associated with the ith bond. Then

DV 01p =
K∑

i=1

xiDV 01i

where xi is the number of bonds of type i in the portfolio.

Example

A portfolio consists of 2 bonds. The first position is in three 5 year zero coupon
bonds, the second is in one 2 year zero coupon bond. The yield curve is flat
at 10%, semiannually compounded. Durations of zero coupon bonds equal
their maturities. The modified durations of the two bonds are 2

1.05
= xxx

and 5
1.05 = yyy respectively. DV O11 = xxx × 0.0001 × 100

(1.05)10 = qqq and
DV 012 = yyy × 0.0001× 100

(1.05)4 = rrr. Hence

DV 01p = 3qqq + 1rrr = $zzz
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A one basis point increase will decrease the bond portfolio by $zzz.

9.8 HEDGING UNDER A PARALLEL SHIFT ASSUMPTION

Assume an investor holds a portfolio that has a DVO1 equal to DV 01p. As-
sume that the investor wants to reduce the DV01 to zero. The resulting
position will then not change value for a small shock in the yield curve. In
order to do this, we assume, at least for the moment that the yield curve shifts
up one basis point. That is, there is a parallel shock. Let DV 01h be the DV01
value associated with the hedging instrument. For example, it could be a five
year coupon bond. The number of units required of the hedging instrument
is chosen such that

DV 01p + nhDV 01h = 0

or
nh = −DV 01p

DV 01h

The negative sign indicates that a short position in the hedging contracts
is necessary.

Example

Assume a position is held that has a DV01 of 500 dollars per million face
value. Assume the hedging instrument consists of our 5 year coupon bond
yielding 10%. Its DV01 is0.0386 per 100dollars. The number of 5 year bonds
to trade is

nh = − 500
0.0386

= −vvvv

By selling short vvv of the five year coupon bonds, the position is immunized
from a parallel shock of 1 basis point.

The above example assumes that a parallel shock of one basis point occurs
at all maturities. This implies that there is perfect correlation of changes in
yields of the two securities. Later on we shall consider the case of hedging
when we allow for non parallel shocks in the yield curve.
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9.9 IMMUNIZATION OF INTEREST RATE RISK

Consider an investor whose goals require that an investment be dedicated to
meet a specific liability of nominal amount F that comes due in m periods.
If the investor held a portfolio of discount bonds having face value F and
maturity m, then, regardless of interest rate behavior, the future value of the
portfolio would cover the future liability. This dedicated portfolio is said to
be perfectly immunized since its value is insensitive to changes in the yield
curve.

Rather than use a discount bond, assume a coupon bond was held. With
coupon bonds, two types of risk exist, price risk and coupon reinvestment risk.
Price risk is the risk that the bond will be sold at a future point in time for
a value different from what was expected. Coupon reinvestment risk is the
risk associated with reinvesting the coupons at rates different from the yield
of the bond when it was purchased. If the maturity date coincides with the
holding period, then price risk is eliminated. As the maturity date increases,
so does price risk.

As interest rates increase (decrease), bond prices decline (increase) while
the returns from reinvested coupon receipts increase (decrease). The fact that
price risk and reinvestment risk move in opposite directions and are subject
to the same influences offers a way to manage interest rate risk. The choice
of the appropriate coupon and maturity bond to hold over a given investment
holding period is often accommodated by means of duration.

To illustrate the general idea consider the case where the yield curve is flat
but immediately after the bond is purchased the yield changes to some new
value and stays there. In this case, the investor is faced with both reinvestment
and price risk, and after m periods, the liability may not be covered by the
accrued value of the coupons and the residual price of the bond. To focus on
this problem, assume the firm has a future obligation of $F to be paid out in
m periods. The current value of the liability is V , where

V0(y) = F/(1 + y)m

To meet this obligation the firm reserves V0 dollars, and uses this cash to
purchase a coupon bond with maturity n, say. The value of this bond is

V1(y) =
n∑

i=1

CFi

(1 + y)i

Here, CFi is the cash flow of the bond in period i, and, since the yield curve
is flat, the yield y in both equations are the same. Moreover, by construction,
the number of bonds purchased is such that V0(y) = V1(y).
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Now, assume a small shift in the yield curve occurs from y to y + ∆y. The
value of the liability changes from V0(y) to V0(y + ∆y), while the value of the
bond changes from V1(y) to V1(y + ∆y). From the quadratic bond pricing
approximating equation we have:

V0(y + ∆y) ≈ V0(y) − D0
mV0(y)∆y +

1
2
C0V0(y)(∆y)2

V1(y + ∆y) ≈ V1(y) − D1
mV1(y)∆y +

1
2
C1V1(y)(∆y)2

For the liability to be immunized by the bond, their market values after the
interest rate change should remain equal. Since V0(y) = V1(y) this implies:

−D0
mV0(y)∆y +

1
2
C0V0(y)∆y)2 = −D1

mV1(y)∆y +
1
2
C1V1(y)∆y)2

For small interest rate changes the convexity adjustments are insignificant
and the above equation reduces to

D0
m = D1

m

That is the modified duration of the assets should be chosen to equal the
modified duration of the liability.

In summary, we have shown that if the yield curve is flat, with a small
parallel shift occurring after purchase of the bond, then, for the market value
of the coupon bond to equal the market value of the future obligation, the
duration of the bond selected should equal the holding period. Since, in our
example the duration of the liability is m, the target bond portfolio should
also have a duration of m.

The above result is really only approximate since the convexity adjustments
were ignored. If the change in yields are large, this approximation may not
hold very well. If a tighter immunization is required then the convexities
should be matched as well. That is C0 = C1. For our particular problem,
using the convexity equation, the convexity of the liability is given by

C0(y) =
m(m + 1)F

(1 + y)2+mV0(y)

Substituting for V0(y) and simplifying leads to

C0(y) =
m(m + 1)
(1 + y)2

A bond having a modified duration of m, and satisfying the above equation
will more precisely match the liability than an alternative bond that merely
matches the duration.
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Example

Consider a five-year bond that pays 12% annual coupons and yields 12%.
Assume the investment horizon is four years. Since the modeified duration is
four years, the bond is locally immunized. If rates fall immediately to 11%
and stayed there over the four-year period, the drop from coupon reinvestment
returns would be offset exactly by increases in the price of the bond.

Example

A $1480 liability is due in 10 periods (5 years). The yield curve is currently
flat at 4% per period (8% per year). With semiannual compounding the
present value of this liability is V0(y) = 1480/(1.04)10 = $1000.

To immunize this liability an investor is considering purchasing the appro-
priate number of units of a bond that pays $69.75 every period, has a face
value of $1, 000, and matures in 14 periods. The current price of the bond is
$1, 314.25, and its duration is 10 periods. Suppose $1, 000 (or 0.7609 units)
of the bond were purchased. If the yield curve stays flat at 8%, and if all
coupons are reinvested, then the value of this portfolio after 5 years would
equal the liability of $1480.

If, on the other hand, after buying the bond, the yield to maturity changed
from 8 to 10 percent, and stayed there, then all bond prices would drop.
However, the higher returns on coupon income would partially offset this
price drop. The total accumulated value from holding one bond for 5 years
(10 periods) is given by

10∑

i=1

CF (1.05)i +
4∑

i=1

CF

(1.05)i
+

1000
(1.05)4

= $1947.34

where CF = $69.75 is the coupon payout in each period. Hence, the total
value of 0.7609 units of the bond is (0.7609)(1947.34) = $1481.7, which is
sufficient to meet the $1480.0 liability.

Figure 9.5 shows the accrued value of the portfolio for different changes in
the yield curve.

Notice that regardless of the shift in the yield curve, price risk is offset by
reinvestment risk and the accrued value from the portfolio always exceeds the
liability.

Table 9.2 shows information on two alternative bonds, bonds, A and C.



180 CHAPTER 8: MEASURES OF PRICE SENSITIVITY 1

Fig. 9.5 Accrued Value of the Portfolio for Different Parallel Shocks

Table 9.2 Information on Two Bonds

Bond A Bond B Bond C

Bond Price 1219 1314 1407
Amount of Bond 0.8203 0.7609 0.7103
Semiannual Yield 4% 4% 4%
Maturity (Periods) 10 14 20
Coupon 67 69.75 70
Face Value 1000 1000 1000
Duration 7.85 10 12.71

The previous analysis is repeated for these bonds and illustrated in Figure
9.6.

Notice that the total accumulated value after 5 years may not be suffi-
cient to meet the liability. For example, by holding bond C, the investor is
speculating that interest rates will decrease and that the loss of reinvestment
income, obtained from lower yields will be more than offset by the accompa-
nying price increase. Similarly, if Bond A (low duration) is held, the investor
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is speculating that interest rates will increase, and that the drop in price will
be compensated by higher reinvestment income.

Fig. 9.6 Accrued Value

A portfolio of Bonds A and C could be constructed to have a duration
equal to the duration of the liability (10 periods) and an initial value equal to
the liability ($1000). Specifically, consider purchasing 0.4574 units of Bond A
and 0.3143 units of Bond C. The value of this portfolio, Vp is

Vp = 0.4574(1218.99)+ 0.3143(1407.71) = $1000.

Moreover, the duration of the portfolio is easily computed. Specifically, the
fraction of wealth,αa, in Bond A is given by

αa =
0.4574× 1218.99

1000
= 0.557.

Hence, the duration of the portfolio is Dp where

Dp = αaDa + (1 − αa)Dc = 0.557× 7.85 + 0.442× 12.71 = 10.0periods
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Figure ?? compares the accrued value of this portfolio to the earlier bond,
Bond B. The above analysis reveals that many portfolios of bonds could be
constructed to have the same duration as the targeted liability, and hence the
portfolio that immunizes the liability by duration matching is not unique. In
the above example the portfolio of bonds appears to be superior to Bond B
because the portfolio’s accrued terminal value is larger, for all yield shifts.

Fig. 9.7 Comparison of Accrued Values of Portfolio vs Bond B

Rather than match the convexity of the liability we might conclude that
among all duration matched bond portfolios, the best portfolio is the one with
the highest convexity. The appropriate portfolio of bonds that achieves max-
imum convexity can be obtained by solving the following linear programming
problem.

Maximize
∑K

i=1 αiCi

subject to
∑K

i=1 αiDi = m
∑K

i=1 αi = 1
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where αi is the proportion of wealth allocated to bond i, and K represents
the number of candidate bonds. A duration matched bond portfolio having
maximum convexity has the property that the selected bonds usually have
extreme durations and/or maturities. Such a portfolio is called a barbell port-
folio since the pattern of cash flows reach their maximums at extreme time
points.

Example

The yield curve is flat at 3%. A firm has a simple stream of liabilities that
are shown in Figure 8.

Fig. 9.8 Stream of Liabilities

The firm wants to hedge these liabilities by purchasing an appropriate
portfolio of bonds shown in Figure 9.9. The firm chooses a portfolio that
matches the duration of the liability, but has a higher convexity. The specific
portfolio, is outlined in Figure 9.10.

Figure 9.11 shows the accrued value of the asset and liability portfolios
after 9 periods, corresponding to their durations. The values are computed
under various assumptions on the size of a parallel shock that hits the yield
curve at date 0.
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Fig. 9.9

Notice that the value of the asset (liability) portfolio is at their lowest level if
no shocks occur. If interest rates decrease, then while reinvested coupons earn
a lower rate, this is more than offset by the increase in the sales price of the
asset price of the bonds at date 9. Notice too, that because the asset portfolio
is more convex, the value of the assets exceed the value of the liabilities.

Figure 9.12 shows the accrued value of the assets and liabilities after 5
periods. In this case, since the duration exceeds the holding period, there is
a significant price risk. If interest rates increase in this period, the higher
reinvestment rates on coupons will not offset the lower bond prices. While
the asset portfolio dominates the liability portfolio, the exhibit clearly shows
that price risk is not balanced against reinvestment risk over this period.

Figure 9.13 shows the accrued value of the two portfolios over 15 periods.
Since duration is less than the holding period, we now see that both portfolios
are suceptible to reinvetment risk. That is, if interest rates go down, the
portfolios both depreciate. Again, due to convexity, the asset position appears
to dominate, regardless of the parallel shock.
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Fig. 9.10

9.10 IMMUNIZATION AND TWIST RISK

The above linear programming problem produces a portfolio of bonds that
is most convex, and hence most likely to produce surplus cash flows at the
date of the liability. However, something should concern you. From the above
analysis it looks like we can purchase high convex bonds, and sell low convex
bonds with the same duration in such a way that our initial net investment
is zero, but the value in the future will be guaranteed to be nonnegative in
all states and positive in most. That is, there is a delightful riskless arbitrage
strategy here. Where is the problem?

Recall that we assumed that the yield curve was flat and that the shock
to the curve was a parallel shock. If this actually occurred, then indeed,
there would be riskless arbitrage strategies. However, the yield curve may not



186 CHAPTER 8: MEASURES OF PRICE SENSITIVITY 1

Fig. 9.11

undergo a parallel shift. One might surmize that the above portfolio strategy
of buying high and selling low convexity bonds is very susceptible to shocks in
the yield curve that are not parallel. This suspicion turns out to be correct.

The risk neglected by assuming parallel yield curve shifts is referred to as
twist risk. We now consider a measure of twist risk. Exhibit 14 below shows
the cash flows of two portfolios of bonds having the same duration as the
target. Portfolio A is a barbell portfolio while portfolio B is closer to a bullet
portfolio. As before the liability date is m.

While portfolio A has greater convexity than portfolio B, it is riskier. To see
this, consider what happens if interest rates change in an arbitrary nonparallel
way. Suppose short rates decline and long rates increase. The accrued values
of A and B would be lower than the target value because of lower reinvestment
rates and lower bond prices. However, the loss in A would be greater than B.
First, lower reinvestment rates are experienced for longer periods with A, and
second, the price risk at m is greater for the long bond in A than that in B.
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Fig. 9.12
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Fig. 9.13

The bullet portfolio has much less exposure to a change in shape of the
term structure. Indeed, if the bond portfolio immunizing the liability has no
reinvestment risk, then the liability is completely immunized regardless of the
shift in interest rate structure. When there are high dispersion of cash flows
around the horizon date, as in the barbell portfolio, the portfolio is exposed
to higher reinvestment risk, and hence greater immunization risk. Near bullet
portfolios are therefore subject to less twist risk than barbell portfolios. A
measure of twist or immunization risk is given by M2 where

M2 =
n∑

i=1

wi(t − m)2

where wi is the present value of the ith cash flow relative to the bond price,
and m is the duration of the bond. Clearly, M2 = 0 only if the weights are
all zero except at date m where W1 = 1. In this case the portfolio consists of
a discount bond that perfectly immunizes the liability regardless of the types
of shocks in the interest rate term structure. In general, the larger M2 , the
greater the variability of cash flows around the “target” date m. Fong and
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Vasicek have shown that the lower the M2 risk measure, the lower the risk
is against nonparallel shifts in the yield curve. To minimize this twist risk
an immunizing portfolio can be constructed by solving the following linear
program:

Minimize
∑K

i=1 αiM
2
i

subject to
∑K

i=1 αiDi = m
∑K

i=1 αi = 1

The first constraint states that the duration must be m. The second con-
straint forces the sum of the fractions of wealth invested in the K bonds to
add up to 1. Additional constraints, such as convexity and nonnegativity
constraints, could be included.

Example

In our previous problem, if the shocks are not parallel shocks, then the value
of the liabilities after 9 periods could exceed the value of the assets. A better
hedge against interest rate shocks would be not only to duration match but
also to convexity match.
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9.11 DURATION AND CONVEXITY USING CONTINUOUSLY

COMPOUNDED YIELDS TO MATURITY

In our analysis so far, we assumed the compounding interval was the same
as the time between cash flows. Let y∗ represent the annualized yield to
maturity, and assume that compounding takes place k times a year. Then

B0 =
m∑

i=1

CFi

(1 + y∗/k)i

D =
m∑

i=1

(i/k)wi

Dm =
D

(1 + y ∗ /k)

where wi is the contribution of the present value of the ith cash flow to the
bond price. Here B0 is the bond price and D is the duration in years.

Notice that as k → ∞, y ∗ /k → 0 and Dm = D. In this case the modifica-
tion of duration to measure price sensitivity becomes unnecessary. Indeed, for
continuously compounded yields, duration and modified duration are identi-
cal.

To see this recall

B =
m∑

i=1

CFi × e−tiy

Hence
dB

dy
= −

m∑

i=1

tiCFi × e−tiy

and
dB

B
= (

m∑

i=1

iwi)dy

where

wi =
e−ytiCFi

B
=

P (0, ti)CFi

B

9.12 DURATION WITH NONFLAT TERM STRUCTURES

So far we have assumed that the term structure of interest rates is flat at y.
Specifically, y(0, t) = y. Then, when a shock ocurrs to the term structure, all
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yields move the same amount. Hence after the shock all yields to maturity
are y + ∆y. We have seen that if such shocks were the only shocks to occur,
then there would be arbitrage opportunities. Hence limiting yield curves to
be flat, and shocks to be parallel, is unreasonable. Actually, for the analysis
in this chapter, we do not need yield curves to be flat. What we do require
is the shock to be the same for all yields. In particular, using continuously
compounded returns, we have.

B(0) =
m∑

i=1

CFi × e−y(0,ti)ti

where y(0, ti) is the actual continuously compounded yield to maturity for the
time period [0, ti] where ti is the time in years to the ith cash flow. Then we
could assume all yields increase by ∆y. Then, the new bond price would be

m∑

i=1

CFi × e−(y(0,ti)+∆y)ti

The duration measure can then be computed by differentiating this equation
with respect to ∆y. This leads to

Dm =
m∑

i=1

ti∆twi

where wi = CFiP (0,ti)
B0

Example

To Be Done

9.13 DURATION DRIFT AND DYNAMIC IMMUNIZATION

STRATEGIES

As time advances, the duration of the portfolio changes, and the holding
period diminishes. Unfortunately, these two values will not decline at the
same rate. Duration, in fact, decreases at a slower rate, a process referred to
as duration drift. Hence a portfolio of coupon bonds with duration matching
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the original liability period, m, will, after a certain amount of time, t say, have
a duration exceeding the target value, m − t. This implies that to maintain
an immunized position, the portfolio needs to be periodically readjusted such
that its duration is reset to the time remaining to the liability payment.

The duration procedures described in this chapter have for the most part
assumed yield curves to be flat and shocks to the yield curve have been re-
stricted to parallel shifts. In practice, yield curves do not behave this way.
Indeed it is unreasonable to assume yields-to-maturity on different assets will
change by the same amount. First, yields to maturity are complex averages
of the underlying spot rates. A given shift in the spot rate curve will result in
the yields to maturity on different assets changing by differing amounts. Sec-
ond, yields for different maturities are imperfectly correlated. If short term
rates increase by 1%, long term rates typically move by less than 1%. Indeed
the short rate and long rate could move in different directions, causing the
yield curve to increase (decrease) in steepness, for example. This twisting
shape in the yield curve is not explicitly considered in the previous models.
It suggests that the yield curve responds to more than one factor. With more
than one factor causing shocks to the yield curve, more complex duration
models need to be established. Ideally, these models should be based on more
realistic models of interest rate behavior. A significant body of research has
been devoted to this problem, and many alternative duration measures have
been constructed.3

9.14 DURATION OF FLOATING RATE NOTES.

Consider a floating rate note that pays according to 6 month LIBOR every
6 months for n years. LIBOR is determined at the beginning of each period
and paid at the end of the period. Let `[ti, ti+1] represent the Libor rate at
date ti for the time period [ti, ti+1]. The cash flow of N`[ti, ti+1]∆ti occurs
at date ti+1. We shall assume the face value N is $100. To convert 6 month
LIBOR into a semiannually compounded rate, we have

y

2
= `[ti, ti+1]×

Days in period
360

We have seen that the price of a floating rate note at date 0, is given by:

VFLOAT = 100P (0, t0) =
100

(1 + y/2)p

where p is the fraction of a six month period remaining to the next reset date.

3We shall consider some extensions to the theory in the next chapter.
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Alternative Development of the FRN Pricing Equation

Assume the maturity of the FRN was 6 months. If the bond equivalent yield
is y, we have:

VFLOAT =
100(1 + y/2)

1 + y/2
= 100

Now assume the bond has 12 months to go. We know that after 6 months
the bond will trade at par. Hence the value of the bond is the present value
of $100 plus the present value of the interest over a reset period. That is:

VFLOAT =
100(1 + y/2)

1 + y/2
= 100

Repeating this arguement recursively, reveals that at a reset date the FRN is
always set at its face value.

Now consider what happens between reset dates. The final cash flow is
given by 100(1 + y∗/2) where y∗ was determined at the previous rest point.
The price is therefore given by

VFLOAT =
100(1 + y∗/2)

(1 + y/2)p

where p is the fraction of a six month period remaining to the cash flow, and
y is the bond equivalent yield associated with the current LIBOR rate over
the time to the next reset date.

The Duration of the FRN is therefore given by differentiating the above
equation with respect to y. The result is:

DFLOAT =
p/2

1 + y/2

The modified duration of FRNs therefore range from 0 to 0.5 years. FRNs
hence behave like fixed rate notes with maturities with less than six months
remaining to maturity.

9.15 DURATION FOR INTEREST RATE SWAPS

An interest rate swap can be viewed as a long position in a fixed rate note
and a short position in a floating rate note. We can compute the duration of
each of the legs separately, but we cannot really compute the duration of the
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swap, since at the initiation date the value of the swap is zero. In a portfolio
context, however, the swap can be handled quite effectively.

In practice, it may make more sense to investigate the absolute change
in value of the swap to a yield curve shock. For example, the PVBP of an
interest rate swap can be easily obtained.

Example

To be done

9.16 INVERSE FLOATERS

An inverse floating rate note is a FRN, where the rate varies inversely with
the index rate, such as 6 month Libor. In particular,

Rateti = k − `[ti, ti+1]

A floor of zero is placed on this rate to ensure that the number cannot go
negative.

Example

A dealer purchases 100m dollars of a fixed rate bond, that pays 10%
coupons semiannually, and place it in trust. The trust then issues a 50m
dollar floater and a 50m dollar inverse floater with the floater linked to six
month Libor. The rate on the inverse floater is:

10%− Libor.

At each reset/coupon date the trust receives 100 × 0.10/2 = 0.5 million
dollars. In addition the trust is responsible for paying 50y∗/2 million dollars
on the floaters and 50(0.10−y∗)/2 million dollars on the inverse floaters. Here
y∗ represents the 6 month Libor rate. The net sum the trust is responsible
for is 50 × 0.05 = 0.25 million dollars.

The buyer of an inverse floater can be viewed as long the fixed bond and
short the floater. Ignoring the floor, we therefore have:

VINV ERSEFLOAT = VFIXED − VFLOAT
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The duration of an inverse floater can now easily be determined. Let

wFIXED =
VFIXED

VINV ERSE FLOAT

wFLOAT =
VFLOAT

VINV ERSE FLOAT
.

Then, the duration of the inverse floater is:

DINV ERSEFLOATER = wFLOAT DFLOAT + wFIXEDDFIXED

9.17 CONCLUSION

This chapter has reviewed the basic concepts of risk management measures in
the bond market. The most common measures of the sensitivity of default free
bonds to interest rate changes is captured by modified duration and convexity.
The assumption here is that when shocks occur in the yield curve they are
parallel shocks. Applications of these measures were provided. In particular
we investigated how portfolio managers can use duration and convexity to
immunize debt obligations.
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9.19 EXERCISES

1. The term structure is flat at 8%. Consider an 8% coupon bond with
semiannual payouts that matures in 10 years. If yields increased by 1
basis point (y = 8.01%) what would be the effect on price? If the yield
curve was flat at 9% and increased by 1 basis point, would the price
effect be bigger or smaller. Explain.

2. A bond has 2-years to maturity, pays semiannual coupons, and a face
value of $1,000. The coupon is 7%, and the yield-to-maturity is 8%.

(a) Compute the price of the bond.

(b) Compute the duration, and modified duration of the bond.

(c) Compute the convexity of the bond.

3. Assume the yield on the bond changes from 8% to 8.05%.

(a) Using the bond pricing equation, compute the new price of the
bond, and then establish the change in the bond price.

(b) Using the linear approximation, compute the change in the bond
price.

(c) Using the quadratic approximation, compute the change in the
bond price.

(d) Compare the answers in (b) and (c) to that in (a) and draw con-
clusions.

4. Repeat problem (2), but this time assume the yield changes from 8 to
10%.

5. A discount bond is available with a maturity of 6 years. The annualized
yield-to-maturity of this bond is 7% (computed on a semi annualized
basis) and the face value is $1000.

(a) Compute the price of this bond.

(b) Compute the duration, modified duration and convexity of this
bond.
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6. A trader has an obligation of $10m due in 4 years. The trader decides
to purchase units of the bond in question (1) and the bond in question
(3), and wants to choose the portfolio that has a duration equal to that
of the liability. Establish the required portfolio.

7. A 8 year bond has annual coupons. The coupon is 10%, the face value
is $1000, and the current yield curve is flat at 10%.

(a) Compute the duration of the bond.

(b) Assume the yield curve increased from 10% to 10.5%, and remained
unchanged for two years, at which time the bond was sold. Assume
all coupons were reinvested. What would be the total accrued value
of the account.

(c) Another coupon bond with a duration of two years was available.
Assume the number of units purchased of this bond were chosen so
that the initial investment was equal to the inital value of the above
bond. After two years, would the accrued value of the account be
more insulated from an immediate parallel shift in the yield curve.
Explain.

8. Assume the yield curve is flat at 10%. (y = 10%) Consider the following
3 bonds:

Bond A B C

Maturity (Years) 2 5 8
Coupon 8% 10% 2%
Face Value 1000 1000 1000

(a) Compute the prices of the 3 bonds.

(b) Compute the duration, modified duration and convexity of the 3
bonds.

(c) Use bonds A and B to construct a portfolio that has a duration of
3 years.

(d) Use bonds A and C to construct a portfolio that has a duration of
3 years.

(e) Of the two portfolios constructed in (c) and (d), which one is more
convex. If the trader wanted a duration of 3 years to immunize an
obligation due in 3 years, which of the above two portfolios would
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you recommend? Explain.

(f)Of all the portfolios of bonds A, B and C, find the portfolio that max-
imizes convexity. Assume the trader is not allowed to sell bonds
short. That is, solve the linear programming problem for the max-
imum convexity problem but include in your constraints, the fact
that all the weights of the portfolio must be nonnegative.

(g) Compute the twist risk for each bond, and then identify the min-
imum twist risk portfolio that has a duration of 3 years. Again,
in your linear programming formulation, assume the trader is only
concerned with portfolio weights that are non-negative.

(h) Compute the portfolio that maximizes twist risk, subject to the
duration and nonnegativity constraints. Compare this portfolio to
that obtained in (f).



CHAPTER 8: EXERCISES 201

Appendix
Derivation of Modified Duration and Convexity

Differentiating the bond pricing equation leads to

dB/dy = −
m∑

t=1

tCFt

(1 + y)t+1

Dividing both sides by the bond price yields

dB

dy

1
B

=
−

∑m
t=1

tCFt

(1+y)t

B(1 + y)

or
dB

dy

1
B

= −D
1

1 + y

which leads to the duration equation.

Differentiating the bond pricing equation two times, leads to:

d2B

dy2
=

m∑

t=1

t(t + 1)CFt

(1 + y)t+2

from which the convexity equation follows.

Finally, use Taylor’s expansion of B(y):

B(y + ∆y) ≈ B(y) +
dB

dy
∆y +

1
2

d2B

dy2
(∆y)2

Now substituting in the modified duration and convexity exprtessions leads
to the quadratic approximation equation.




