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On Pricing and Hedging in the Swaption Market:
How Many Factors, Really?

Abstract

This article examines how the number of stochastic drivers and their associated volatility struc-

tures affect pricing accuracy and hedging performance in the swaption market. In spite of the

fact that low dimensional one and two-factor models do not reflect historical correlations that

exist among forward rates, we show that they are capable of accurately pricing swaptions as well

as higher order multifactor models, across all expiry dates and over all underlying swap matu-

rities. Effective out-of-sample pricing is necessary but not sufficient for good hedging. Indeed,

regarding hedging, we show there are significant benefits in using multifactor models. This is

true even if one accounts for the fact that fewer hedging instruments are required when single

factor models are used to hedge swaptions. Our empirical findings have strong implications for

the modeling and risk management of an array of actively traded derivatives that closely relate

to swaptions.
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According to the Option Clearing Corporation, the notional amount of derivatives held by

US commercial banks is about $40 trillion, with interest rate derivatives contracts accounting

for 80% of this total. Over-the-counter contracts account for over 90% of the total notional

amount, with exchange-traded contracts making up the rest. In this large market, the primary

option contracts are caps and floors on interest rates and swaptions, which are options to enter

or cancel swaps. The notional amount of these over the counter contracts exceeds 5 trillion

dollars, making them amongst the most important interest rate claims that trade.

Based on the size of this market, it is not surprising that significant effort has been placed

on developing pricing models for these claims.1 Despite the importance of caps and swaptions,

there is still wide divergence of opinion on how to best value these claims. It is widely believed

that since the term structure of interest rates is driven by multiple factors, interest rate claims

should be valued using multifactor models. Standard arbitrage arguments of Heath, Jarrow and

Morton (1992) have shown that for pricing purposes, models differ according to the assumptions

imposed on the volatility and correlation structures of forward rates. The exact specification of

the volatility structures for forward rates, and the appropriate number of factors to be used, are

considered to depend on the particular application. For example, Rebonato (1999) argues that

while a one-factor model, in which forward rates are instantaneously perfectly correlated, might

suffice for the pricing of caps, it is very unlikely to be useful for pricing swaptions, since they

depend heavily on the correlation among forward rates.2

Recent advances in modeling methodology have made it possible to use multi-factor models

to price even complex interest rate claims, like American swaptions.3 This has led to a deeper

discussion on how many factors are really necessary to model interest rate claims such as caps

and swaptions, as well as more complex claims like Bermudan and American swaptions. Several

studies have attempted to address these issues and, as we discuss in the next section, the results

are mixed and somewhat confusing. We attribute much of the confusion to the fact that some

studies focus on pricing issues, while others focus on hedging. Actually, the answer depends

on whether the model is to be used for pricing alone, or whether it is to be used for hedging.

1Indeed, given the liquidity of caps and swaptions, traders often demand that models for interest rate exotics,

such as Bermudan swaptions and resettable caps, have the property that they price these claims at, or at least

very close to, their market values.
2A cap consists of a portfolio of caplets, each caplet representing an option on an individual forward rate. In

contrast, a swaption can be viewed as an option on a portfolio of forward rates. As a result, the relationship

between caps and swaptions is determined largely by the correlation structure among the forward rates. Rebonato

claims that since in a one-factor model forward rates are perfectly correlated, such models will tend to overprice

swaptions.
3Recent studies by Andersen (2000), Carr and Yang (1999), Longstaff, Santa-Clara and Schwartz (2001b),

Longstaff and Schwartz (2000) and Pedersen (1999), for example, contribute to the literature by developing

methodology that allows contracts such as Bermudan swaptions to be numerically priced, relative to a given array

of European swaptions, and consistent with the current term structure.
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As we discuss later on, if models are evaluated solely on pricing performance, then lower order

models might be acceptable. However, if models are evaluated based on hedging performance,

then a more demanding standard is established, and lower order models might be unacceptable.

Good pricing performance is a necessary condition for a useful model; good hedging performance,

however, is sufficient!

In this article we investigate a broad range of one, two, three and four-factor models with

different volatility structures, that incorporate varying degrees of level and maturity dependence

to pick up skewness and volatility hump effects. We closely examine how these models perform

in pricing and hedging swaptions. Typical data sets in this market consist of at-the-money con-

tracts, with an array of expiry dates and maturity dates of the underlying swaps. Characterizing

the biases in prices produced by the models along these two dimensions is important, and has

not been well documented by empiricists to date.4 A good model should have the property that

all expiry and maturity effects are well explained. Of course, if we had data on the prices of

away-from-the-money swaptions, then skew effects could also be examined. While such data is

not available to us, we are fortunate to have price data on caps with multiple strikes, which we

use to explore skew effects.

In the first part of the paper we investigate the impact of adding additional factors on pricing

swaptions. To measure pricing effectiveness, we calibrate a model using known swaption and

term structure data. Once the parameters are estimated we can price claims in the future

contingent on the future term structure. If the “out-of-sample” residuals are “small” and have

no biases, then the model is viewed positively. In our analysis, the “out-of-sample” tests are

conducted one, two, three, and four weeks after calibration. We replicate some of the results

of Longstaff, Santa-Clara and Schwartz (2001a), hereafter LSS. They consider models with up

to eight factors, and show that a four-factor model is necessary to price swaptions accurately.

LSS argue that the large improvements obtained by adding factors is due to the fact that

low dimensional models are unable to produce realistic correlations among forward rates and

getting these correlation effects right is crucial for pricing swaptions. We provide an alternative

explanation to their results, and identify specific one and two-factor models that can price

swaptions as effectively as their four-factor model. Indeed, for the purpose of pricing swaptions,

one-factor models may suffice.

In the second part of the paper we examine hedging effectiveness. Given a model, we can

establish a hedge position in bonds. Then, if the model is correct, holding the hedge position

for a short time increment should lead to small price changes relative to the unhedged position,

regardless of the future term structure. The models can then be evaluated based on their hedging

errors. We show that models that price well do not necessarily hedge well. In particular, multiple

4An exception is Jaganathan, Kaplin and Sun (2001) who characterize the pricing performance of their models

according to the expiry dates of the swaption.
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factors play a bigger role here. Our one-factor model, which was competitive with a four-factor

model for pricing, is much less precise when viewed from the hedging perspective. For hedging

swaptions, multi-factor models are desirable! Given these results for vanilla swaptions, it is

clear that hedging products such as Bermudan swaptions, and other exotics, which typically are

priced relative to a core set of swaptions, will be more effective with multi-factor models.

The paper proceeds as follows. In the first section we review the literature, sort through

the current set of confusing empirical results, and highlight the contributions that this article

makes to the literature. In the second section we discuss the set of 18 different models that

we evaluate. In the third and fourth sections we discuss our data and model implementation.

In section five we discuss our experimental design for examining pricing accuracy and hedging

precision. In section six we closely examine a nested set of principal component based models.

In section seven we compare the performance of our best principal component based model with

alternative lower order models. In section eight we examine the hedging effectiveness of our

models. Section nine concludes.

1 Literature Review

Amin and Morton (1994) present one of the early tests of alternative forward rate volatility

structures. They find that the single factor generalized Vasicek model provides the best out-

of-sample pricing performance. Using caplet data, where maturities ranged from 3 months to

10 years, Ritchken and Chuang (1999) show that a generalization of this model, that captures

the hump in the volatility of forward rates would lead to significant improvements. Gupta

and Subrahmanyam (2001) examine many one and two-factor models for pricing and hedging

interest rate caps and floors. Their data set was unique since it contained cap and floor prices

with multiple strike prices. Unlike Amin and Morton, they conclude that a one-factor lognormal

forward rate model outperforms other competing one-factor models in pricing accuracy, with two-

factor models improving pricing performance only marginally. However, for hedging, they find a

significant advantage in moving from one to two-factor models. Bühler, Uhrig, Walter andWeber

(1999) test different one and two-factor models in the German fixed-income warrants market,

where an array of claims trade with maturities up to 3 years. They reject the deterministic

volatility structure for forward rates in favor of a model where volatility is proportional to the

level of rates. However, unlike Gupta and Subrahmanyam (2001), they find no advantage in

moving beyond a one-factor model.

Few empirical studies have been conducted on swaptions. LSS use a string model framework

to test the relative valuation of caps and swaptions using at-the-money cap and swaptions data,

and find evidence for using at least a four-factor model for swaptions. Their criterion for eval-

uating models is based on the sum of squared percentage pricing errors. In other words, their
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criterion is based on pricing accuracy, not on hedging precision.5 Peterson, Stapleton and Sub-

rahmanyam (2001) develop an extension of the lognormal model of Black and Karasinski (1991)

to multiple factors and provide evidence that the addition of a third factor is helpful in pricing

swaptions. In this regard, these studies provide support for Rebonato’s claim of the importance

of the correlation structure.

Not all studies, however, indicate that multiple factors are necessary for improving pricing

performance for swaptions. For example, Driessen, Klaassen, and Melenberg (2001), (here-

after DKM) investigate the performance of several Gaussian models, where volatility structures

are deterministic functions of their maturities. They show that the out-of-sample pricing per-

formance of swaption pricing models does not necessarily improve as the number of factors

increases. Indeed, one of their one-factor models prices swaptions no worse than their multi-

factor models and to the same degree of accuracy as LSS’s multi-factor model. Jagannathan,

Kaplin and Sun (2001) investigate the pricing of swaptions using multifactor Cox, Ingersoll and

Ross models. Their preliminary conclusions suggest that increasing the number of factors does

not necessarily improve pricing performance. Indeed, adding factors makes the pricing of short

term contracts worse.

Very few studies have compared the abilities of different models for hedging swaptions. LSS

briefly consider hedging, in the context of their four-factor model, relative to the Black model,

but they do not evaluate the benefits of hedging using an increasing number of factors.6 Perhaps

the most comprehensive study is by DKM, who use their Gaussian models to demonstrate that

if the number of hedge instruments is equal to the number of factors, multi factor models

outperform one-factor models in hedging caps and swaptions. However, they claim that by

using a large set of hedge instruments, their one-factor models perform as well as multi-factor

models. This last finding is the opposite of what Gupta and Subrahmanyam (2001) find in the

cap market. We are unaware of any other studies specific to the swaption market.

Recently, significant research has been done regarding the importance of factors for pricing

Bermudan swaptions. Longstaff, Santa-Clara and Schwartz (2001b) show that exercise strate-

gies based on one-factor models understate the true option value for Bermudans.7 They contend

that the current market practice of using one-factor models leads to suboptimal exercise poli-

cies and a significant loss of value for the holders of these contracts. However, Andersen and

5Hull and White (1999) develop very similar models to the LSS models using the LIBOR market based model

of Brace, Gatarek and Musiela (1997) and the extended LIBOR market model of Andersen and Andreasen (2000).

A big motivation for extending the existing models was to permit an analysis of volatility structures that were not

proportional to their levels. Hull and White test their extended model using data for a single day, and provide

preliminary support for multi-factor models where volatilities are not linear in forward rates.
6In addition, their hedging tests are not based on the construction of portfolios of traded instruments.
7Radhakrishnan (1998) also shows that one-factor models underprice Bermudan swaptions relative to two-

factor models.
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Andreasen (2001) conclude that the standard market practice of recalibrating one-factor models

does not necessarily understate the price of Bermudan swaptions. While their study is useful

since it suggests that practitioners are not making systematic errors in marking their Bermudan

swaptions to market, it does not fully resolve the issue of how many factors are necessary to

model Bermudan swaptions, since they do not investigate any hedging issues.

In summary, some studies find that four factors are necessary for pricing swaptions, while

others find that one and two-factor models are satisfactory. Some studies find that multifactor

models are necessary for pricing Bermudan swaptions, while others find the current market prac-

tice of recalibrating one-factor models to be satisfactory. The few studies on hedging swaptions

have also produced mixed results, with one study finding that hedging with a one-factor model,

but using multiple hedging instruments, is not worse than hedging swaptions in a higher order

model, and another study drawing the exact opposite conclusion.

In performing empirical tests on pricing and hedging effectiveness, there are some important

features that we have to consider. First, all the models that we study have time stationary

volatility structures.8 As discussed earlier, our volatility structures are also chosen to accom-

modate a large number of different skew patterns in implied volatilities. This is accomplished

by introducing varying degrees of level dependence into the volatility structures. Both level

dependence and time-stationarity assumptions come at some cost. Level dependence results in

increasing the number of state variables that are necessary to characterize the dynamics of the

term structure, thereby increasing the computational complexity. Without time dependence

in the volatility structures, it is not possible to construct models that can match an array of

swaption prices exactly.

Introducing time dependence in models can serve to illustrate interesting properties of models

and is a common practice at investment banks. Andersen and Andreasen (2001), for example,

show that the popular market practice of using continuously recalibrated one-factor models,

with time varying parameters, may be a good proxy, even if true prices are generated by higher

factor models where the correlation among forward rates is lower. Using cleverly introduced

time varying parameters in one-factor models may help explain whether exercise decisions are

being well proxied, and whether such models serve a role for correctly marking exotic products

to market. However, even if a clever choice of adjustment factors is made in a one-factor

model so as to produce the same price as a properly calibrated higher factor model, the hedges

produced by the two models will be distinct, and the hedging effectiveness of the one-factor

model will be suspect, especially if the time varying parameters used in the model are not

stable over time. Since our goal is not only to assess whether one-factor models are appropriate

for pricing accuracy, but also to assess their hedging effectiveness, we restrict our analysis to

8If market participants had strong beliefs that volatilities would change over time in a specific manner, then

we could accommodate this. However, in practice, this assumption may be unreasonable.
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stationary volatility structures, where the number of free parameters that need to be estimated

are limited, and hence exact matching of European swaptions to their market prices is unlikely.

In addition to not using time varying parameters, all the models that we examine have at most

four free parameters in the volatility structures, so at best we could only match four swaptions

at any point in time. The models considered by LSS have the property that the number of free

parameters equals the number of stochastic drivers. In contrast, some of our low order one and

two-factor models contain as many free parameters as our four-factor models.

Our first goal is to untangle some of the conflicting pricing results in the swaption market.

In particular, we compare the pricing performance of several single and multi-factor models with

different volatility structures and identify those models that eliminate most of the pricing biases

in the swaption market. In this regard, our paper is closely related to DKM and LSS. However,

the former only study Gaussian models, where the volatility structures are independent of their

levels, while the latter only investigate a specific family of nested models that have proportional

volatility structures.

For swaptions, we first confirm the results of LSS, that from a pricing perspective, increasing

the number of factors up to four (within principal component based models) provides improved

precision in estimating out-of-sample prices. LSS argue that the reason for such large improve-

ments is due to correlation effects. We show that similar results are obtained for caps which may

be less sensitive to correlation effects. We then test whether the improvement in these types

of models is due to increasing the number of factors, or increasing the number of parameters.

We do this by considering several one and two-factor models that have the same number of

free parameters as our four-factor models, and compare their pricing performance. In this case,

we find that for pricing swaptions, the benefits of increasing the number of factors beyond one

is minor. Indeed, we conclude that from a pricing perspective only, there appears to be little

advantage in moving from a one to a four-factor model. Our pricing results hold true even when

swaption prices are generated upto four weeks after the parameters were estimated. For pricing

purposes, the importance of models that better reflect correlation structures among forward

rates is minor.

We also address the importance of level dependence in the volatility structures. Since volatil-

ity skews are hard to assess in the swaption market, because the prices of contracts that are

available are restricted to at-the-money contracts, we turn to the cap market to get evidence for

the pricing performance over the strike price domain.9 Our results show that incorporating level

dependence in the volatility structure is extremely important for away-from-the-money caps,

and that proportional dependent structures are better than both square root or level indepen-

dent structures. For at-the-money swaptions, the level dependence issue is minor. However, the

9Incorporating level dependence in the volatility structure results in distributions of forward rates that are no

longer Gaussian. This has large implications for pricing claims that derive value from the tails of the distribution.
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evidence from cap prices suggests that away-from-the-money swaptions would be better priced

using proportional models rather than level independent structures.

The removal of systematic expiry date and underlying swap maturity biases in out-of-sample

pricing is a necessary condition for a model to be useful for hedging, but it is not sufficient.

The second goal of our research is to investigate the ability of alternative models in hedging

swaptions. In particular, we want to carefully quantify the benefits, if any, of using higher

order factor models over lower order models. We investigate the effectiveness of alternative

hedging strategies using different models and differing numbers of hedging instruments and

produce convincing evidence that multifactor models are essential for reducing the risk in hedged

positions. We also demonstrate that allowing additional hedging instruments in a one and two

factor model does not improve the results. Our main conclusion is that while accurate swaption

prices can be obtained from a one-factor model, one and even two-factor models cannot hedge

swaptions well, and the benefits of multifactor models are significant.

The results of our research have obvious implications for practitioners who are uncertain as

to which models to implement for the pricing and hedging of swaptions. While one-factor models

can be as effective as multifactor models for marking to market purposes, for hedging purposes,

multifactor models are preferable. Typically, interest rate derivatives desks trade many exotic

contracts, including resettable caps and Bermudan swaptions. Since traders often demand that

models for these products have the property that they price liquid swaptions and caps at or at

least close to their observed market prices, modelers often begin the process by specifying the

number of stochastic drivers and the nature of the volatility structures. While these choices may

depend on the particular application, our research casts light on the benefits of beginning with

particular structures. Our research also casts light on value at risk systems. In such systems

many interest rate claims have to be priced under different scenarios, and the question of how

many factors to incorporate needs to be addressed. In such cases, given a future possible forward

rate curve, an accurate set of prices with one-factor models may be satisfactory. On the other

hand, if the desk is setting up a hedge, then the requirements of a model are more demanding

and multifactor models are required.

2 The Basic Models

Caps and swaptions are actively traded, and, according to market convention, their prices are

quoted in volatility form using the standard Black (1976) model, with instruments at different

maturities and strikes trading at different implied volatilities. Since the volatilities used in the

Black model are for forward rates, for the case of caps, and swap rates, for the case of swaptions,

direct comparisons of cap and swaption volatilities are not meaningful. Indeed, the Black formula

should be viewed only as a nonlinear transformation from prices into volatilities and vice-versa.
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This market convention provides a convenient way of communicating prices because volatilities

tend to be more stable over time than actual dollar prices. The market convention does not

imply that participants in this market view the Black model as being appropriate.

Let f(t, T ) denote the forward interest rate at time t for instantaneous riskless borrowing or

lending at date T. The dynamics of forward rates are given by

df(t, T ) = µf (t, T )dt+
N

n=1

σfn(t, T )dwn(t), with f(0, s) given for s ≥ 0. (1)

where {dwn(t)|n = 1, 2, . . . , N} are standard independent Wiener increments. The volatility
structures, {σfn(t, T )|n = 1, 2, . . . , N}, could, in general, be functions of all path information up
to date t.

Heath Jarrow and Morton (1992) show that to avoid riskless arbitrage, the drift term, under

the equivalent martingale measure, is completely determined by the volatility functions in the

above equation. Specifically:

µf (t, T ) =
N

n=1

σfn(t, T )
T

t
σfn(t, u)du.

This implies that for pricing purposes, only the volatility structures need to be specified and

estimated.

As discussed, all the volatility structures that we consider are time homogeneous. Let

σf1(t, T ) = [a+ b(T − t)]e−κ(T−t) + c f(t, T )γ . (2)

This parametric volatility structure nests many well known models. First, when γ = 0, the

volatility structure is a deterministic function of maturity. With c = b = 0 the model reduces to

the generalized Vasicek model, commonly referred to as the single factor Hull and White (1993)

model, in which forward rate volatilities dampen with their maturity. With b and c released

from 0, the model can accommodate hump shapes in forward rate volatilities. Such models have

been considered by Moraleda and Vorst (1997) and Ritchken and Chuang (1999). They have the

attractive feature that analytical solutions can be set up for pricing many derivative contracts.

However, they have also been criticized since interest rate volatilities do not depend on their levels

and can therefore become negative. When γ is positive, the volatility structure does depend

on the level of rates. In this case, however, computational problems emerge. In particular,

the term structure is no longer Markovian in a finite number of state variables.10 Fortunately,

Monte Carlo simulation provides a powerful tool for computing European claims, and recently,

Longstaff and Schwartz (2001) and Andersen and Broadie (2001), among others, have shown

that American claims can also be computed using rather simple and efficient methods.11

10For a discussion of Markovian Heath, Jarrow, Morton models see Ritchken and Sankarasubramanian (1995a)

and Bhar and Chiarella (1995)
11For a review of simulation approaches for pricing claims see Boyle, Broadie and Glasserman (1997).
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We consider three parametric one-factor models, where the volatility structure is of the form

in equation (2). The models differ according to the level dependence parameter, γ. In particular,

we consider models where γ is zero, one half, and one. All these models have four parameters.

In our two-factor models, the first volatility structure is of the form in equation (2), with

c = 0. The second volatility structure is of the form:

σf2(t, T ) = d[r(t)]
γ . (3)

For this two-factor model, the shocks to forward rates consist of two types. The first consist of

a shock that depends on the level of the forward rate and on the maturity. Over the short end

the structure permits an increasing volatility, but eventually the shock dampens with maturity.

The second shock has a “parallel” effect over maturity. The absolute magnitude of this effect

is driven by the level of the short rate. A structure similar to this model has been empirically

examined by Inui and Kijima (1998). For γ = 0 this model nests the two-factor generalized

Vasicek model of Hull and White (1993). For γ = 0.5 and 1 the model is similar to a generalized

Cox, Ingersoll and Ross (1985) model and a proportional model respectively. Note that all three

of our two-factor models also have four free parameters.

The final set of models are based on modifying the loadings provided by the principal com-

ponents of the historical correlation matrix of forward rates along the lines of the string models

of LSS. In these models we consider a discrete set of M maturities say, {τ1, τ2, . . . , τM} with
τ1 < τ2, . . . , τM . Then:

σfj (t, t+ τj) = g(τj)f(t, t+ τj)
γ (4)

where g(.) is a deterministic function of the maturity of the forward rate, that is estimated

primarily using principal component analysis on historical data. In particular, take the case

where γ = 0. Using historical data on weekly forward rates, a correlation matrix of forward rate

changes, separated by three months for maturities less than a year, and six months thereafter (up

to ten years maturity), is obtained. In particular, twenty two forward rate maturities are used

and a twenty two by twenty two correlation matrix is established. The matrix of eigenvectors

(principal components) is computed, and the first four eigenvectors are retained. Let

T ∗ = {τ1 = 0.25, τ2 = 0.5, τ3 = 0.75, τ4 = 1, τ5 = 1.5, τ6 = 2, τ7 = 2.5, ...τ21 = 9.5, τ22 = 10}

represent the set of 22 forward rate maturities, and let hi be a 22× 1 vector representing the ith
eigenvector for i = 1, 2, 3 and 4. Then, define:

gi(τj) = λihij . where i = 1, 2, 3, 4 and j = 1, 2, ..., 22.

where hij is the j
th element of the ith eigenvector, and the λi values are the free parameters, the

ith one representing the scaling factor for all the elements of the ith principal component, and

is implied out at any date t using date t swaption data.
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The principle behind such a procedure is simple. As shown by several researchers, including

Litterman and Scheinkman (1991), the first four historical principal components identify the

four most important types of orthogonal shocks to the forward rate curve. Since the exact

contribution of each of these shocks may vary over time, the eigenvalues for the future period

may be different from the eigenvalues over the historical period. Since, in an efficient market,

the swaption data reflects all available information on the set of forward looking correlations

among forward rates, this data should be used to establish the eigenvalues.

When γ differs from 0, the same analysis is done, except the correlation structure for the

principal component analysis is estimated over transformed values of forward rates. For example,

when γ = 1, the correlation is estimated over percentage changes in forward rates.

The above method, which we term an adapted Principal Component Analysis (PCA) method

has been used by LSS for proportional models (γ = 1) and by DKM for absolute models ( γ = 0).

In addition to these, we also permit γ = 0.5. Notice that, like all our other models, our four-

factor model has four free parameters that can be implied out using option data. Notice too,

that if a three factor model is used, then only the first three principal components are retained

and the number of free parameters drops by one.

In summary, we consider twelve PCA models ( 3 one-factor, 3 two-factor, 3 three factor and

3 four-factor models) and six parametric models ( 3 one-factor and 3 two-factor models). All

the parametric models and the four-factor PCA models have four free parameters. The other

models have as many free parameters as stochastic drivers.

3 Data

The data for this study consists of USD swaption and cap prices. The swaptions data set

comprises volatilities of swaptions of maturities 6 months, 1-, 2-, 3-, 4-, and 5-years, with the

underlying swap maturities of 1-, 2-, 3-, 4, and 5-years each (in all, there are 30 swaption

contracts). As per market convention, a swaption is considered at-the-money when the strike

rate equals the forward swap rate for an equal maturity swap. The cap prices are for a ten-month

period (March 1 - December 31, 1998), across four different strikes (6.5%, 7%, 7.5%, and 8%)

and four maturities (2-, 3-, 4-, and 5-year), obtained from Bloomberg Financial Markets. For

swaptions, the data consists of at-the-money volatilities for a 32 month period (March 1, 1998

- October 31, 2000), obtained from DataStream.

For constructing the yield curve, we use futures and swap data. For the short end of the

curve (upto 1 year maturity), we use the five nearest futures contracts on any given data. These

futures rates are interpolated, and then convexity corrected to obtain the forward rates for 3-,

6-, 9-, and 12-month maturities. The rest of the yield curve out to 5 years is estimated using
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the forward rates bootstrapped at 6 month intervals from market swap rates. The futures and

swap data is obtained from DataStream. Eventually, we obtain weekly forward rate curves that

start one year before our cap and swaption data begins, and extends to the end of our swaption

data period.

For the principal component analysis we follow the procedure used in LSS. Specifically, we

use the one year history of forward rates that exist prior to the beginning of our swaption data,

to estimate the correlation structure of forward rates. For example, for γ = 1, we estimate the

percentage changes in forward rates from the historical time series of forward rates. We then

decompose the correlation matrix, R, into UΛ∗U I, where U is the matrix of eigenvectors and

Λ∗ is a diagonal matrix of eigenvalues. Finally, we retain the first four eigenvectors and assume
a covariance structure for forward rates, Σ, given by Σ = UΛU I where Λ is a diagonal matrix
with the first four diagonal elements positive, the others zero. A similar analysis is done for the

models with γ = 0 and γ = 0.5.

4 Model Implementation

We consider a discrete implementation of the multifactor HJM model. Towards this goal, we

divide the time interval into trading intervals of length∆t, and label the periods with consecutive

integers. Let f∆t(t, j) be the forward rate at period t, for the time interval [j∆t, (j+1)∆t]. Let

∆f∆t(t, j) represent the change in the forward rate over a time increment ∆t. That is

∆f∆t(t, j) = f∆t(t+ 1, j)− f∆t(t, j)
The actual magnitude of this change could depend on the forward rate itself and on its maturity

date, and other factors.

We start with an initial forward rate curve, {f∆t(0, j), j = 0, 1, . . . ,m} that is chosen to
match the observed term structure at date 0 for all maturities up to date m∆t. Notice that

f∆t(0, 0) is just the spot rate for the immediate period, [0,∆t]. Over each time increment, the

forward rates change as follows:

∆f∆t(t, j) = µ∆tf (t, j)∆t+
N

n=1

σ∆tfn (t, j)
√
∆tZ

(n)
t+1. (5)

where Z
(n)
t+1 is a standard normal random variable, j is an integer larger than the current

date, t, µ∆tf (t, j) is the drift term, and σ∆tfn (t, j), is the volatility term associated with the nth

factor, n = 1, 2, ..., N , where the N standard normal random variables are independent. The

discrete time equivalent of the Heath-Jarrow-Morton restriction is given by

µ∆tf (t, j) =
N

n=1

µ∆tfn (t, j)
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where

µ∆tfn (t, j) = σ2 ∆tfn (t, j)
∆t

2
+ σ∆tfn (t, j)σpn(t, j)

and

σpn(t, j) =
j−1

i=t+1

σ∆tfn (t, i)∆t

for n = 1, 2, ...., N .

Prices of European interest rate claims can be computed using Monte Carlo simulation.

Specifically, we simulate K = 2000 different paths, each path initiated at date 0 where the

initial term structure is given. Consider the kth simulation. Given the date 0 term structure,

forward rates are updated recursively using equation (5). This gives the kth path of the term

structure of forward rates. At date 0 $1.0 is placed in a fund that rolls over at the short rate.

At date t∆ the value of the money fund, M(t; k), is given by:

M(t; k) =
t−1

i=0

ef
∆t(i,i)∆t.

Consider a claim that pays out in period TE . Using simulation, a set of forward rates at this

date can be computed, and hence all bond prices and swap rates can be recovered. In addition,

the accumulated money fund, M(TE ; k), along this path is known. The terminal value of this

claim for this path can then be computed. Let C(TE ; k) be this value. The date 0 value of the

claim, for this path, is approximated by

C(0; k) =
C(TE ; k)

M(TE ; k)
.

The value of the claim at date 0 is then given by the average of all these values obtained over

the K paths. Specifically:

C(0) =
K
k=1C(0; k)

K
.

Since repeated calls are used to estimate the parameters of the process, it is important that

the pricing algorithms be as efficient as possible. Hence we use ∆t = 0.125 years. Rather than

price all the contracts separately, we simulate the money fund and forward rates along paths

for a ten year period, and at each relevant maturity date along the path, all the appropriate

caplet and swaption prices are computed. We repeat this procedure K = 2000 times, and use

antithetic variance reduction techniques, to establish the fair prices of all our contracts. We

ran extensive robustness checks to ensure that the benefits of increasing the sample size and

decreasing the time partition were negligible. Further, to the extent possible, we use the same

stream of random numbers to price the same contracts with different volatility structures. This

ensures that the difference in prices of the contracts is more tightly attributable to the different

volatility structures rather than to sampling error.
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5 Experimental Design

Like Amin and Morton (1994), DKM, LSS, and Moraleda and Pelsser (2000), we estimate model

parameters from cross sectional options data. At any date we fit models to the prices of swaptions

for different expiry dates and underlying swap maturities. Our objective function is to minimize

the sum of squared percentage errors between theoretical and actual prices using a non-linear

least squares procedure. An alternative objective would be to minimize the sum of squared

errors in prices. However, since prices of swaptions can range from a couple of basis points to

a thousand basis points, which is almost four orders of magnitude apart, such a minimization

would place more weight on the expensive contracts.

The first set of experiments examine the pricing issues for at-the-money swaptions. Using

the swaption data, for each odd week, using mid-week data, we establish the best fit for the

prices of all swaptions. Given these parameter estimates, we forecast one, two, three and four

week out-of-sample residuals, which are all labeled according to their in-sample time period,

model and contract.

A similar set of experiments are conducted on cap prices. For each of our models we establish

the best fit for the prices of caps for the 4 strikes and 4 maturities. We do this using mid-week

data, in separate optimizations, for every odd week. We then use the parameter estimates,

together with the term structure the following week, to generate one week “out-of-sample”

residuals. In addition, we also compute two, three and four week out-of-sample residuals. These

residuals are stored for each model, for each contract and for each date.

Our hedging experiments are conducted as follows. Given any calibrated n-factor model,

we can establish a hedge position for a particular swaption using n different LIBOR discount

bonds. For example, for a four-factor model, four price changes for each swaption are recorded,

each price change arising after a small shock is applied to a single factor. In addition, the four

price changes to a set of discount bonds are computed. The unique portfolio of the four bonds

is then established that hedges the swaption against instantaneous shocks consistent with the

model. The construction of the hedged position at any date t, only uses information available

at date t. This analysis is repeated for all contracts and for all models. The hedge position

is maintained unchanged for one week, and the hedged and unhedged residuals are obtained

and stored. The analysis is repeated for holding periods of two, three and four weeks as well.

Finally, this entire procedure is repeated every second week, over all 70 weeks, for which data

was available. Further, as we will discuss, alternative criteria are applied to select the hedging

instruments, and in some cases, more hedging instruments were used than factors.12

12For a discussion of how best to use simulation models for establishing hedge ratios see Jäckel (2001).
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6 Pricing Performance of PCA Models

Table 1 presents the average absolute percentage errors for one week out-of-sample swaption

and cap prices produced by the PCA models.

Table 1 here

The results show that for any given value of γ, increasing the number of factors improves

the pricing performance for swaptions. This confirms the results obtained by LSS, who conclude

that four factors are necessary for pricing swaptions. Table 1 also shows that for a fixed number

of factors, increasing γ has no significant effect on reducing the average absolute percentage

errors for swaptions. Since the level dependence parameter, γ, controls the skewness of the risk

neutral distribution, and since all the swaptions are at-the-money contracts, these results are

not surprising.13

Table 1 also presents the results for caps. For any given number of factors, the average

absolute percentage errors for models with γ = 1 are consistently lower than those for models

with γ = 0, with the errors for models with γ = 0.5 being in between the two. In contrast to

swaptions, the advantage of increasing the number of factors appears to be small.

In order to further investigate the effects of level dependence, Table 2 presents the proportion

of times that a PCA model with a particular γ value produces one week out-of-sample cap prices

closer to actual market prices, than the same model with a different γ value. These proportion

tests are based on a total of 352 residuals each, since there are 16 cap contracts on each of the 22

dates. For example, for the one-factor PCA model, 66% of the residuals from a γ = 0.5 model

are closer to zero than the residuals produced by the γ = 0 model. For each of the PCA models,

the precision increases with an increase in the γ value.

Table 2 Here

These results provide conclusive evidence for the use of proportional models over square root

and absolute models for explaining the skew effects in cap prices, since they price away-from-

the-money contracts better. This suggests that away-from-the-money swaptions would also be

better priced by proportional models.

In order to further examine the effects of increasing the number of factors, Table 3 reports the

proportion of times a higher order PCA model outperforms a lower order PCA model in pricing

caps. Specifically, for each of the four PCA models and the three γ values, we estimate the one

13Prices of away-from-the-money contracts convey more information about the tails of the conditional distrib-

ution of forward rates and are more sensitive to γ. For example, see Ritchken and Sankarasubramanian (1995b).

14



week out-of-sample prices, and compute the residuals. Again, since there are 16 contracts at

each date and 22 dates, we have 352 residuals for each model-gamma combination.

Table 3 here

For each pair of models, Table 3 reports the proportion of times (out of 352) that one model

produces smaller residuals than the other. For example, for γ =1, the two-factor PCA model

produces prices closer to the actual market prices 57% of the time, when compared to the one-

factor PCA model. The results show that, at the 1% level of significance, for all levels of γ,

the two-factor, three-factor and four-factor PCA models outperform the one-factor PCA model.

The three-factor model outperforms the two-factor model. However, the four-factor model does

not produce results significantly different from the three-factor model.

Table 4 presents similar tests for swaptions. In each of the 70 time periods there are 30 con-

tracts, for a total of 2100 residuals. The table presents the percentage of times the higher order

model produces smaller absolute residuals than the lower order model. The results are presented

for the in-sample residuals, as well as for one, two and four week out-of-sample residuals, only

for the proportional model.

Table 4 Here

These results show that within a PCA framework, the two-factor model outperforms the one-

factor model, the three-factor model outperforms the two-factor model, and the four-factor model

outperforms the three-factor model. These results are significant at the 1% level of significance,

and are consistent with those reported in other studies. When the results are broken down and

analyzed by expirations (or underlying swap maturities), the same trend is observed. Overall,

the marginal improvement from adding an additional factor decreases as the number of factors

increases, and the contribution of the fourth factor, while statistically significant, is small. The

relative performance of PCA models for swaptions remains the same, even as the out-of-sample

period is increased to four weeks. Although not reported in the paper, we also observe that the

inference drawn from caps remains unchanged as the out-of-sample period increases from one

to four weeks.

In summary, we show that for at-the-money swaptions, level dependence is not important,

but increasing the number of factors (within PCA models) to four improves pricing performance.

Since level dependence is important for away-from-the-money caps, we postulate that it is im-

portant for away-from-the-money swaptions as well. Finally, for caps, increasing the number of

factors to three or four significantly improves pricing performance.

LSS attribute the better performance of the multi-factor PCA models for swaptions to the

fact that they are capable of producing more realistic correlation structures for the forward
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rates. On the other hand, since caps are less sensitive to correlation effects, the improvement in

their pricing performance, as the number of factors increases, might be surprising, and raises the

possibility that there are other explanations. For example, the improvements in performance

might be due to the fact that higher order models have more free parameters than lower order

models, and the improvements arise because of these extra degrees of freedom.

7 Pricing Performance of Parametric and PCA Models

In this section, we establish whether the improvement in pricing swaptions is due to increasing

the number of free parameters in the model, or due to increasing the number of stochastic drivers.

In order to do this, we focus on the two parametric models with one and two stochastic drivers,

and on the four-factor PCA model (which is the best model among the PCA models), all of

which have four free parameters. The four-factor PCA model clearly comes closest to matching

the historical correlations among forward rates. If this, indeed, is an important feature of the

swaption market, then this model should outperform one and two-factor models with the same

degrees of freedom. On the other hand, if correlations are less important, than the one and

two-factor models should be comparable. In addition, the previous results for PCA models were

based on aggregate statistics. In this section, we examine the potential biases in the models

when the contracts are broken down by expiry and underlying swap maturity dates.

Table 5 compares the average absolute swaption errors in the out-of-sample prices by each

model.

Table 5 Here

The one week out-of-sample results are similar to the results obtained for the PCA models,

where the importance of γ was found to be minor. In light of the importance of γ in pricing

away-from-the-money caps, we therefore focus on models with γ = 1. Table 5 shows the two,

three and four week out-of-sample performance of the models with γ = 1.

What immediately stands out is the performance of the one-factor parametric model. In

particular, one week out-of-sample, the model prices swaptions with average absolute errors less

than three percent, which is typically within the bid-ask spreads in the swaptions market. Indeed,

for the one-factor parametric model, of the 2100(70×30) one week out-of-sample residuals, 84%
(56%) were within one (one-half) Black vol, and almost one-third were within one-quarter of a

Black vol.

Table 5 also shows that, in aggregate, the two-factor parametric model outperforms the one-

factor parametric and the four-factor PCA models. Therefore, of all the models, there is a slight

preference for the two-factor model. The important point here, however, is that the four-factor
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model, at the aggregate level, does not dominate the lower order models. However, since the

above conclusions are based on aggregate results, they may mask any expiration date and swap

maturity biases.

7.1 Effects of Level Dependence on Pricing

To more closely examine the effects of level dependence on the pricing of swaptions, we compute

the average percentage errors, one week out-of-sample, for each swaption expiration and under-

lying swap maturity, for each model. Figure 1 presents the average percentage errors for each

swaption expiration, plotted against the underlying swap maturity, for all three models and for

all three γ values.

Figure 1 Here

In general, the one-factor model underprices swaptions with lower underlying swap matu-

rities, and overprices swaptions with higher underlying swap maturities. However, the figures

clearly show that the inclusion of level dependence does not eliminate this bias. Indeed, the

pricing patterns are strikingly similar for all three values of γ, across all swaption expirations

and underlying swap maturities. There appears to be no benefit of incorporating level depen-

dence in the one-factor model, which confirms the results that were obtained at the aggregate

level in Table 5.

The last two columns of Figure 1 show that the two-factor parametric model and the four-

factor PCA model produce similar results. Interestingly, in the PCA models, it is not just the

lower underlying swap maturity swaptions that are underpriced. For some swaption expirations,

even the longer underlying swap maturity swaptions are underpriced, with the medium swap

maturity swaptions being overpriced. Figure 1 indicates that incorporating level dependence

has little effect on pricing at-the-money swaptions.

As discussed earlier for the PCA models, we turn to our cap data to assess the effects of level

dependence in forward rate volatility structures. Table 6a presents the average absolute pricing

errors for caps, one week out-of-sample.

Tables 6a and 6b Here

This table shows that models with γ = 1 are significantly better for pricing sway-from-the-

money caps. In Table 6b we provide pairwise comparisons across models with different γ values.

For all cases, the models with γ = 1 are the best, and the models with γ = 0 are the worst.

Figure 2 presents the breakdown of the biases by moneyness for differing maturity dates and

models.
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Figure 2 Here

The figure clearly identifies skew effects, especially for the models with γ = 0 and γ = 0.5.

The models with γ = 1 explain more of the skew effects than the other models. In light of the

evidence on skews in the cap market, and the indifference of level dependence for at-the-money

swaptions, we only consider models with γ = 1.

7.2 Effects of the Number of Factors on Pricing

So far, we have presented results for swaptions at the aggregate level. We now examine individual

contract pricing errors in more detail, across the models, to determine if there is any significant

benefit to moving beyond a one-factor model for pricing at-the-money swaptions. Figure 3

presents the box and whiskers plots of one week out-of-sample errors for the one- and two-factor

models, and the four-factor PCA model. The plots are presented separately for each swaption

expiration, with the errors for the three models plotted across underlying swap maturities.

Figure 3 Here

For the six month expiry contracts, the one-factor model produces fairly unbiased prices

with small variances for all 5 underlying swap maturities. Indeed, with few exceptions, over all

30 expiry-swap maturity combinations, the bias and the interquartile range for the one-factor

model appear to be no worse than those for the four-factor model. Further, for any expiry date,

the trends of the biases across swap maturities appear to be random. The plots suggest that

the largest differences between the models arise for short term expiration dates.

The percentage errors for almost all of the 30 expiration - swap maturity buckets are within

3 percent. Table 7 presents the proportion of one week out-of-sample residuals that are within

one, one-half, and one-quarter of a Black vol. of the actual price.

Table 7 Here

As can be seen, the precision of the three models is similar. Over 80% of all contracts are

within one vol, with almost 60% of the contracts being within half a vol. This represents a

reasonable bid-ask spread during the time period analyzed in this study.

Table 8 provides pairwise comparisons among the three models for each expiry-underlying

swap maturity combination. While there are some expiry dates-swap maturity combinations

where the four-factor model performs the best, overall, there appears to be a preference for the

lower order parametric models. Indeed, Table 7 suggests that the differences in the performance

18



of the models is small, with all models producing a high percentage of prices within bid-ask

spreads.

Table 8 confirms this inference, with more formal pairwise proportion tests across the models.

The table presents the proportion of times that one model produces more precise one week out-

of-sample prices than another, for contracts broken down by expiration and swap maturity.

We first examine the summary statistics. In comparing the residuals produced by the different

models, contract by contract, the two-factor parametric model produces smaller residuals than

the one-factor model 55% of the time, and smaller residuals than the four-factor PCA model

54% of the time. The four-factor PCA model does not outperform the one-factor parametric

model. Therefore, we conclude that on an aggregate basis at the 1% level of significance, the

two-factor parametric model is the best, with no significant differences between the one-factor

parametric and the four-factor PCA models. However, the table allows us to identify where some

models fail. Specifically, the reason for the poor performance of the four-factor PCA model is

its inability to price both very short and very long dated swaptions.

Table 8 Here

The results in Tables 7 and 8 reaffirm the conclusion that was derived from the aggregate

results, that all three models produce results that are satisfactory, with the two-factor parametric

model being marginally better. Unlike LSS, we do not conclude that higher order models are

necessary for effectively pricing swaptions, one-week out-of-sample and even beyond, up to four

weeks.

7.3 Implied Volatility Structures from Swaptions and Caps

Figure 4 presents the time series of forward rate volatilities, estimated using our three models

with γ = 1. The left panel shows the estimated volatility structures implied out using swaption

data for each second week over the entire period of 140 weeks, while the right panel shows the

same volatility structures implied from the cap market for each second week over the data period

of 44 weeks (which falls almost in the middle of the swaption data).

The volatility surface for the swaption data is clearly humped, with the maximum volatility

occuring in the second year. The two-factor model also displays the hump, although there are

a few periods, in the latter part of the time series, where the peaks are very high and occur in

the first year. Finally, the volatility structures for the four-factor model are more spiked, but

similar.

The volatility surfaces for forward rates implied out from the cap market are also, for the

most part, humped. For the first 20 weeks, the one-factor model produces a volatility hump of
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forward rates that is fairly stable over time. However, in a few of the latter periods, the implied

structure of the volatility of forward rates expands over the five year horizon. The estimated

volatility structures for the two-factor model and the four-factor PCA model also reflect the

expanded volatilities over the latter part of the data set.14

Figure 4 Here

In comparing these two panels, we observe that the volatility structures implied out by

swaptions are more stable over time, for all the models. However, the overall patterns are fairly

similar.

Unlike the volatility structures of forward rates, the implied correlations produced by the

three models are very distinct. The average correlation between forward rates and the spot rate

produced by the two parametric models is much higher than the actual correlations over the

time period, while the four-factor model, as expected, produces values fairly close to the actual

correlations over the time period.

Our analysis shows that for pricing swaptions it may not be necessary to require accurate

calibration of correlations among forward rates, and high dimensional models, such as three or

four-factor models, may not be necessary.

8 Hedging Performance of Parametric and PCA Models

Our analysis shows that conditional on a future term structure, all three models are capable of

producing fairly precise estimates of swaption prices one to four weeks after the parameters for

the volatility structure have been estimated. The removal of systematic expiry date and swap

maturity biases from a pricing model is a necessary condition for any viable model for swaptions.

However, a good model should also be able to hedge effectively. If the model is correct, the risk

of carrying a hedged position over a time increment is entirely due to the fact that the volatility

parameters are not known with certainty and continuous revisions were not accomplished over

the time increment. If one model consistently produces hedges that are more effective than

another model, then it must be the case that the first model, with its volatility structure, better

captures the true dynamics of the term structure and the true sensitivity of options to movements

in the underlying term structure. Evaluating models based on how accurately they price in the

future conditional on the future set of bond prices, is much less demanding than evaluating

models based on whether changes in swaption prices can be replicated by changes in particular

portfolios of bonds, where the hedge ratios are determined by the model. The pricing accuracy

14The latter part of this data set corresponds to the period immediately after the solvency threat of Long term

Capital Management, when interest rate volatilities did spike up. For a discussion on this point see LSS (2001a).
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tests are in some sense conditional tests, where the future term structure is taken as given. In

contrast, the hedging tests are more demanding in that they are unconditional tests that require

more precision in estimating how swaption price changes are related to the underlying dynamics

of bond price changes. A model that prices well and removes systematic biases may be a good

model. A model that can be consistently used to construct efficient hedges is a good model.

Pricing accuracy is necessary for a good model, but hedging precision is sufficient!

We first compare the hedging effectiveness of the one-factor model using one discount bond,

with the two-factor model using two discount bonds and the four-factor model that hedges using

four discount bonds. For the one-factor model, we take the discount bond corresponding to the

maturity date of the underlying swap. For the two-factor model, the two hedging instruments

are taken as the discount bonds corresponding to the expiration date of the swaption and the

maturity date of the underlying swap. Finally, for the four-factor model, the hedging instruments

are taken to be these two discount bonds, plus two additional bonds that have maturities equally

spaced between the expiry and underlying swap maturity date. Given the choice of maturity,

the hedges are uniquely determined. Since no analytical solutions are available for the hedge

ratios, we use Monte Carlo simulation to set them up. Specifically, the initial term structure

is perturbed by a small shock to a specific factor, and then the price of each swaption and

hedging instrument is recomputed. The sensitivity of the swaption price to the underlying

hedge instruments is then established. For the one-factor model, only one-factor is perturbed,

and the hedge ratio is readily computed. For the two-factor model, two separate perturbations

are involved that lead to two equations in the hedging instruments with two unknowns, and a

unique hedge position that immunizes shocks to the two model factors is then computed. Finally,

for our four-factor model, each shock corresponds to a shock to the principal component. Given

four hedging instruments, the hedge portfolio immunizes shocks to the first four factors.

8.1 Effects of the Number of Factors on Hedging

The benchmark hedging period is one week, i.e., the hedge is set up and then evaluated after

one week. For each swaption contract, a time series of weekly unhedged and hedged residuals

are obtained. The ratio of the standard deviation of the hedged position versus the standard

deviation of the unhedged swaption over the 70 weeks provides one measure of the effectiveness

of the hedge for a particular swaption contract. This is the criterion used by DKM and is

equivalent to investigating the R2 values or percentage of variance explained by the hedging

variables in a regression analysis.15

Table 9 presents the ratio of the standard deviations of the hedged versus unhedged positions

for the three models. The analysis is limited to contracts with at least two years between the

15This latter methodology is a popular method for evaluating hedging effectiveness.
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expiry date and swap maturity date. This is necessary, since four distinct instruments are needed

for hedging within the four-factor model, and we want the hedging instruments to be separated

by a minimum of six months. This simplifies the analysis since all swap rates are observed at

six month increments, hence no interpolated rates are needed to estimate the prices of discount

bonds.

Table 9 Here

The magnitude of the standard deviation ratios is impressive. For example, reported at the

bottom of the table is the average hedge effectiveness over all contracts. For the one-factor model,

the ratio is 0.34. Squaring this number leads to 0.1156, which implies that the hedge reduces the

variance by over 88%. The average performance if the hedge is maintained unchanged for two,

three and four weeks is also reported in the table. Over the four week period, the average ratio

is 0.37, which translates into a variance reduction of about 86%.16 In contrast, the four-factor

model accounts for about 91% of the variance of the unhedged position.

In comparing the ratios of standard deviations across models, contract by contract, there

appears to be very minor improvement as the number of factors increases. At first glance, this

indicates that there is little benefit in increasing the number of stochastic factors in a model

beyond one. Indeed, this criterion is used by DKM in comparing alternative models. However,

comparing standard deviations is only meaningful if the models produce average hedging errors

close to zero. If average hedging errors are not near zero (i.e., the model is biased), then a better

metric to use is the root mean squared error. Figure 5 compares the box and whisker plots of

hedging errors for each contract type across the three models. It also presents the unhedged

pricing errors.

Figure 5 Here

The figure immediately shows that all hedges are doing their job! However, it also shows

that the one-factor model has larger errors. While the spread of the errors, as indicated by

the width of the inner box, are of similar sizes for the three models, the bias in the results are

greatest for the one-factor model. As an example, consider the six month expiry contracts. The

biases in the hedging errors, as indicated by the difference between the median error and zero,

are large and positive for the one and two-factor models. In contrast, the interquartile ranges are

somewhat similar. This phenomenon holds true for almost all expiry dates, with the exception

16DKM keep their hedge in place for two weeks and their best one-factor Gaussian model reduced variance

by 60%. Of course, their data period is different, and they included caps in addition to swaptions, so a direct

comparison may not be fair.
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of the long term contracts. Here, the bias is small, but the variance of the residuals produced

by the one-factor model is larger.

Figure 5 clearly shows that the analysis in Table 9 cannot be used to infer hedging effective-

ness, and that a more appropriate hedging test is that based on the root mean squared error

of the hedging errors. Table 10 presents the root mean squared error (multiplied by 10000) for

each contract type. As a result, each entry can be interpreted in basis points.

Table 10 Here

As an example, consider the six month maturity contract on a swap of two years. The

unhedged root mean squared error is 12.1 basis points, while the one-factor hedged position has

a root mean squared error of 6.2 basis points. The four-factor PCA model, however, has a root

mean squared error of 3.0 basis points, indicating it is almost twice as effective. In comparing

the root mean squared errors, contract by contract, the benefits of the four-factor model become

apparent.

As a more formal test of hedging effectiveness, we conduct pairwise comparisons of the

hedging residuals produced by each model. Specifically, for each contract and for each week, the

hedging residual is computed and the model with the smallest absolute value of hedging error

is identified. The results are presented in Table 11. For example, for the six month contract,

with swap maturity of two years, out of 70 hedging experiments, the two and four-factor models

produce smaller absolute hedging residuals than the one-factor model on 87% of occasions. In

66% of occasions, the four-factor model outperforms the two-factor model. If the hedges are

maintained unchanged for two weeks, the performance of the multifactor models improves even

further. Indeed, over the four week period, the four-factor model outperforms the one-factor

model in all but one week.

Table 11 Here

The table clearly shows that over all contracts, and for all weeks, the multifactor model is

dominant. For hedging purposes, multifactor models are necessary!

8.2 The Effects of Increasing the Number of Hedging Instruments

DKM show that when bucket strategies are used for hedging, the performance of the one-factor

models improves significantly. In light of their result, we set up experiments where the benefits

of using additional hedging instruments in a one and two-factor model could be assessed.

The hedging instruments for these tests are selected as follows. Let the swaption expiry

date be labeled date 1, and the underlying swap maturity date be labeled date 4. So far, for
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the one-factor model, we only considered hedging using the date 4 maturity discount bond. In

contrast, the four-factor model uses the date 1 and 4 bonds, together with two equally spaced

bonds in between. Let these two corresponding dates be 2 and 3, respectively. For the one-factor

model, we now consider hedging the swaption with two discount bonds, with three bonds, and

with four bonds. In particular, with two bonds, we choose bonds 3 and 4; with three bonds,

we choose bonds 2,3 and 4; and with 4 bonds we use the same set of bonds as the four-factor

model.

If more than one hedging instrument is used in a one-factor model, the hedge ratios are not

unique, and a somewhat arbitrary rule must be made to construct the specific bond hedges. We

use equal number of bonds in each hedge. Of course, other allocations can be considered, as well

as other rules for obtaining unique hedge ratios, but our goal was only to assess if there were

any strategies using lower order models that could lead to significant improvements.

For the two-factor model, we use two hedging instruments corresponding to dates 1 and 4.

When using three hedging instruments, we choose the third bond to be the middle maturity

between 1 and 4, and with four hedging instruments, we again use bonds 1,2,3, and 4. With

three hedging instruments, we assume that the numbers in the short bond and the middle bond

are equal; for the four hedging instruments, unique hedges are constructed by assuming the

number of bonds in the first two maturities to be equal, as well as the number of bonds in the

last two maturities to be equal.

The one-factor model with one hedging instrument, corresponding to the swap maturity

(labeled bond 4), is used as the benchmark. The number of times the benchmark model produces

smaller absolute residuals than each of the challenging models is recorded, across all weeks for

each contract. Table 12 summarizes the results aggregated over all contracts.

Table 12 Here

For the one-factor model, none of the potential enhancements produce better results. Sim-

ilarly, no improvements are obtained for the two-factor model. Other bond allocations were

tested, but we could not identify systematic ways of improving the performance of lower order

models using multiple hedging instruments.17

Since we conclude that the four-factor PCA model is the best model from the hedging

perspective, it is worthwhile to look at the composition of the hedge positions over time. Since

17For example, in the one-factor model, it is true that choosing a different maturity bond as the single bond to

hedge with can make a difference. For example, using the expiry date bond as the only hedging instrument gave

very poor results relative to using the swap maturity dated bond. Since the choice of hedging instruments should

not really matter, if the model is correct, this only provides more evidence that the one-factor model is a poor

model for hedging.
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the hedge ratios depend on the term structure and since absolute volatilities of forward rates

depend on the level of forward rates, one cannot expect the hedges to be identical over time.

Moreover, it could be argued that since the hedge is constructed based on solving a system of

four equations in four unknowns, the hedge portfolio, being unique, might be unstable over time

periods and subject to problems from measurement errors. However, the hedge compositions

are fairly stable over time. To illustrate this, Figure 6 presents the time series of all four hedge

ratios for a typical swaption contract, namely a contract with expiry date in 3 years and a swap

maturity of 3 years. The underlying hedging instruments are the bonds with maturities of 3,

4, 5 and 6 years. Similar trends were observed for all other contracts - the hedge compositions

using the four-factor model were remarkably stable. Since the hedge ratios are all based off cross

sectional estimations, the stability of the time series results suggest that our models are indeed

capturing a somewhat stable underlying volatility structure.

Figure 6 Here

9 Conclusion

This article carefully examines the role of volatility structures and factors in the pricing of

swaptions. Among the PCA models, we show that increasing the number of factors up to four

improves pricing performance. Similar results are obtained for caps. Since away-from-the-money

caps provide information about skew effects, we use that data to establish that level dependence

is important and that proportional models are better than absolute or square root models. Our

results reconfirm the results of LSS and suggest that the Gaussian models of DKM could be

improved upon by incorporating level dependence in the volatility structures.

One limitation of the PCA models is that the number of free parameters implied out from

derivatives data equals the number of stochastic drivers. Therefore, it is unclear whether the

four-factor PCA model outperforms lower order models due to the number of factors or due

to the number of free parameters. If it is due to more factors, it supports the importance of

forward rate correlations for modeling swaption products. However, if it is due to the fact that

higher order models have more degrees of freedom which permit better fits to swaptions, then

the need to model correlations well is questionable. By analyzing lower order models with the

same degrees of freedom, we address this issue, and conclude that, from a pricing perspective,

one-factor models are sufficient.

Regarding hedging effectiveness, however, the one-factor models are significantly outper-

formed by multifactor models. We show that the higher order models perform consistently

better for all contracts, regardless of their expiration date and underlying swap maturity. In

the analysis, we show that the popular criterion of assessing hedging performance based on
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the percentage of unhedged variance explained by the hedging instrument could lead to flawed

conclusions. This is due to the fact that some models have systematic biases in their hedges,

since the model upon which the hedge is based is flawed. Using root mean squared error as

the criterion, which accounts for variance and bias, leads to more precise conclusions. In the

hedging tests, the performance of multifactor models is not only superior for hedges maintained

over one week, but also for hedges maintained unchanged for as long as four weeks. In addition,

the four-factor model produces remarkably stable hedges.

While at a superficial level our results echo the final conclusions reached by LSS, our con-

clusions are arrived at for different reasons. In particular, for pricing purposes they find it

necessary to use four-factor models. In contrast, we find a one-factor model that is satisfactory

for pricing, and only recommend multifactor models for hedging. Our results are consistent with

Andersen and Andreasen (2001), who identify useful one-factor models for pricing Bermudan

swaptions. With regard to both pricing and hedging, our results also align with those obtained

by Gupta and Subrahmanyam (2001), who show that in the cap market, one-factor models are

good enough for pricing, but two-factor models are required for hedging. Our hedging results

for swaptions also show that using multiple instruments within a lower order model does not

improve hedging performance. These results differ from DKM, possibly due to their incorrect

use of variance reduction as a criterion of hedging effectiveness. Bias effects are important when

a misspecified model is used.

It would be interesting to examine how well the models we examine perform on swaptions

with strikes away-from-the-money. Unfortunately, we do not have prices of such contracts. For

at-the-money swaptions, the effects of level dependence in the forward rate volatility structure

are not apparent. Indeed, absolute and square root models work as well as proportional mod-

els. For the Gaussian models, extremely accurate analytical approximations are available for

swaption prices. However, based on our results for caps, it is likely that away-from-the-money

swaptions might be more sensitive to the level dependence parameter, γ, hence models with

γ = 1 are preferable.

While our study indicates that there is a need for multi factor models for hedging exotics like

Bermudan swaptions, much work remains here. For example, Andersen and Andreasen (2001)

explore the common market practice of pricing swaption based products by continuously refitting

a model with time varying parameters to swaption prices. The common market practice for

hedging, as far as we can assess, is to perturb selected forward rates, one at a time, and to

reprice under each shocked curve. The resulting price changes of claims can then be hedged

using Eurodollar futures of the appropriate maturities. It remains for future research to assess

if the hedges set up based on this popular market approach are competitive with hedges set up

using our higher order multi-factor models.

Continuing to extract information from interest rate derivative products, no doubt will lead
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us to an increased understanding of the nature of the volatility structure of forward rates. A

deeper understanding of these structures is crucial for interest rate risk management and value

at risk.
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Table 1 
 

Absolute Average Pricing Errors - PCA Models 
 

This table presents the average absolute percentage errors, one week out-of-sample, for swaptions and caps, 
for the PCA models tested in this paper. The swaption data corresponds to biweekly data from March 1, 
1998 – October 31, 2000, consisting of 70 data sets. Hence each error reported for swaptions is an average 
across 30 contracts over 70 dates (hence an average of 2100 individual errors). The cap data corresponds to 
biweekly data from March 1 – December 31, 1998, consisting of 22 data sets. So each error reported for 
caps is an average across 16 contracts over 22 dates (hence an average of 352 individual errors). The 
standard error of the mean is reported in parenthesis. The options are priced using Monte Carlo simulation 
with 4000 paths for the evolution of the term structure. In generating the paths, the same seeds for the 
random number generator were used to ensure consistency across the models. 
 
_______________________________________________________________ 
             Swaptions   Caps 
   _________________  _________________ 
   γ=0 γ=0.5 γ=1  γ=0 γ=0.5 γ=1 
_______________________________________________________________ 
 
One-factor   4.22 4.22 4.52  18.9 16.4 15.8 
   (0.08) (0.08) (0.09)  (0.79) (0.75) (0.76) 
 
Two-factor  3.81 3.57 3.64  18.1 16.0 14.9 
   (0.07) (0.07) (0.08)  (0.75) (0.72) (0.80) 
 
Three-factor  3.39 3.15 3.18  18.1 16.1 14.6 
   (0.07) (0.07) (0.08)  (0.75) (0.75) (0.79) 
 
Four-factor  2.99 3.03 3.01  18.1 16.5 14.7 
   (0.06) (0.07) (0.07)  (0.75) (0.78) (0.79) 
_______________________________________________________________ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 



Table 2 
 

Level Dependence Comparisons for Caps using PCA Models 
 

This table compares the one week out-of-sample predictions of each PCA model for each of the 16 
contracts over all 22 dates, for different γ values. For example, for the one-factor model, based on all 352 
pairwise comparisons of residuals, the model with γ=0.5 beat the model with γ=0 66% of the time. A 
starred cell indicates that the proportion is significantly different from 50% at the 5% level of significance. 
 
_____________________________________________________________ 

 
No. of  Factors 

_______________ 

 
γ=0.5 vs γ =0 

____________ 

 
γ =1 vs γ =0 

____________ 

 
γ =1 vs γ =0.5 

_____________ 
 

1 
 

 
0.66* 

 

 
0.59* 

 
0.53* 

2 0.72* 0.69* 0.73* 

3 0.78* 0.76* 0.70* 

4 0.78* 0.79* 0.75* 
_______________________________________________________ 
 
 



Table 3 
 

Comparison of Out-of-Sample Performance of PCA Models for Caps 
 

This table compares the one week out-of-sample predictions for the PCA models for each of the 16 
contracts over all 22 dates.  For example, the first row of the table shows the proportion of the times that 
the two-factor model produces a residual smaller than the one-factor model. All four PCA models are 
compared pairwise. A starred cell indicates that the proportion is statistically significantly different from 
50% at the 1% level of significance. The data corresponds to biweekly data from March 1 – December 31, 
1998. 
_______________________________________   
        

Models 
________ 

γ =0 
________

 

γ =0.5 
________ 

γ =1 
________ 

    

2 vs 1 0.56* 0.57* 0.57* 
3 vs 1 0.57* 0.56* 0.62* 
4 vs 1 0.54* 0.57* 0.59* 

    
3 vs 2 0.63* 0.53* 0.58* 
4 vs 2 0.55* 0.50 0.54* 

    
4 vs 3 0.51 0.46 0.51 

______________________________________________________________________________ 

 
 

 
 
 



Table 4 
 

Comparison of Out-of-Sample Performance of PCA Models for Swaptions 
 

This table compares the one, two, and four week out-of-sample predictions of each PCA model (for gamma 
= 1), for each of the 30 contracts over all 70 dates. The results are aggregated over all expirations and 
underlying maturities for the swaptions.  Results for in-sample tests are also reported for comparison. Each 
entry in the table is based on the number of times a particular model, represented by the first number in the 
row, produces a residual closer to zero than the model it is competing with. Each entry is based on 2100 
residuals.  All four PCA models are compared pairwise. A starred cell indicates that the proportion is 
statistically significantly different from 50% at the 1% level of significance. The data corresponds to 
biweekly data from March 1, 1998 – October 31, 2000. 
 
_________________________________________________ 

         Weeks Out-Of-Sample 
       ___________________________________ 

Models 
________ 

0 
________

 

1 
________ 

2 
________ 

4 
________

   

2 vs 1 0.66* 0.66* 0.64* 0.63*

3 vs 1 0.75* 0.72* 0.69* 0.67*

4 vs 1 0.71* 0.69* 0.66* 0.65*

3 vs 2 0.68* 0.66*         0.65* 0.62*

4 vs 2 0.63* 0.63* 0.59* 0.58*

4 vs 3 0.53* 0.52* 0.53* 0.53*

__________________________________________ 
 



 
Table 5 

 
Average Absolute Pricing Errors for Swaptions - Parametric and Four-Factor PCA Models 

 
This table presents the average absolute percentage errors, one, two, three and four weeks out-of-sample, 
for swaptions across expirations and maturities (of underlying swaps), for the one-factor and two-factor 
parametric models and the four-factor PCA model. The swaption data corresponds to biweekly data from 
March 1, 1998 – October 31, 2000, consisting of 70 data sets. Hence each error reported in this table is an 
average across 30 contracts over 70 dates (hence an average of 2100 individual errors). The standard error 
of the mean is reported in parenthesis. The swaptions are priced using Monte Carlo simulation with 4000 
paths for the evolution of the term structure. In generating the paths, the same seeds for the random number 
generator were used to ensure consistency across the models. 
 
_______________________________________________________________________ 

                     Out-of-Sample Period 
    ______________________________________________________________ 

     1 week    2 weeks     3 weeks    4 weeks  
    _______________________           _________      _________     __________ 

    γ=0 γ=0.5 γ=1       γ=1           γ=1  γ=1 
__________________________________________________________________________________________________ 
 
One-factor Parametric  2.43 2.57 2.96      3.23          3.48 3.70 
    (0.05) (0.05) (0.06)      (0.06)          (0.07) (0.07) 
 
Two-factor Parametric  2.57 2.36 2.48      2.74          3.03 3.16 
    (0.05) (0.05) (0.05)      (0.06)          (0.06) (0.06) 
 
Four-factor PCA  2.99 3.03 3.01      3.34          3.56 3.80 
    (0.06) (0.07) (0.07)      (0.07)          (0.08) (0.08) 
_______________________________________________________________________ 

 
 



Table 6a 
 

Absolute Average Pricing Errors for Caps - Parametric and Four-Factor PCA Models 
 

This table presents the average absolute percentage errors, one week out-of-sample, for caps across strikes 
and maturities, for the one- and two-factor parametric models and the four-factor PCA model. The cap data 
corresponds to biweekly data from March 1 – December 31, 1998, consisting of 22 data sets. So each error 
reported in this table is an average across 16 contracts over 22 dates (hence an average of 352 individual 
errors). The standard error of the mean is reported in parenthesis. The caps are priced using Monte Carlo 
simulation with 4000 paths for the evolution of the term structure. In generating the paths, the same seeds 
for the random number generator were used to ensure consistency across the models. 
 
_________________________________________________________ 
               
    γ=0  γ=0.5  γ=1 
_________________________________________________________ 
 
One-factor Parametric  17.9  15.0  14.4 
    (0.73)  (0.70)  (0.76) 
 
Two-factor Parametric  18.4  15.6  15.1 
    (0.75)  (0.68)  (0.72) 
 
Four-factor PCA  18.1  16.5  14.7 
    (0.75)  (0.78)  (0.79) 
_________________________________________________________ 
 
 

Table 6b 
 

Level Dependence Comparisons for Caps - Parametric and Four-Factor PCA Models 
 

This table presents the results of the proportion tests for the one-and two-factor parametric models and the 
four-factor PCA model, for different values of γ. For example, the first column of this table shows the 
proportion of times a model with γ=0.5 outperforms a model with γ=0. The total number of contracts used 
for each proportion was 352 (22 x 16). The second and third columns show the proportion of times a γ=1 
model beats a γ=0.5 and a γ=0 model respectively. The starred cells indicate the cases where the null 
hypothesis that the proportion of wins is 50% is rejected at the 5% level of significance. 
 
___________________________________________________________ 
          

 γ=0.5 vs γ=0
__________ 

 

γ=1 vs γ=0.5 
__________ 

γ=1 vs γ=0 
__________

One-factor Parametric 0.61* 0.51 0.67* 

Two-factor Parametric 0.70* 0.59* 0.63* 

Four-factor PCA 0.72* 0.65* 0.71* 
___________________________________________________________ 
 
 



Table 7 
 

Proportion of One Week Out-of-Sample Residuals for Swaptions Within Bounds 
 

This table presents the proportion of swaption contracts, one week out-of-sample, that are within 1, 0.5, and 
0.25 Black vols, for the one-factor and two-factor parametric and four-factor PCA models, with γ=1. The 
contracts are aggregated over their maturities. Since there are 70 dates and 5 maturities each, the 
proportions are each based on 350 residuals. 
 
_____________________________________________________________________________________________ 

Expiration Within 1 Black Vol. 
_______________________ 

Within 0.5 Black Vol. 
_______________________ 

Within 0.25 Black Vol. 
_______________________ 

 1-factor 
_______ 

2-factor 
_______ 

4 PCA 
_____ 

1-factor 
_______ 

2-factor 
_______

4 PCA 
_____ 

1-factor 
_______ 

2-factor 
_______

4 PCA 
_____ 

0.5 0.78 0.78 0.71 0.58 0.53 0.39 0.33 0.24 0.19 

1 0.81 0.80 0.84 0.54 0.55 0.59 0.34 0.36 0.32 

2 0.83 0.84 0.90 0.49 0.57 0.62 0.27 0.38 0.34 

3 0.89 0.92 0.87 0.64 0.61 0.59 0.36 0.31 0.36 

4 0.83 0.94 0.91 0.56 0.73 0.63 0.32 0.45 0.38 

5 
________ 

0.84 
_______ 

0.90 
_______ 

0.86 
_____ 

0.57 
_______ 

0.63 
_______

0.56 
_____ 

0.31 
_______ 

0.36 
_______

0.29 
_____ 

Total 0.83 0.86 0.85 0.56 0.60 0.56 0.32 0.35 0.31 
__________________________________________________________________________________________________________________________________________________________________________________________ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 8 
 

Comparison of Parametric and Four-Factor PCA Models for Swaptions 
 

This table compares the one week out-of-sample predictions for the one-factor and two-factor parametric 
models and the four-factor PCA model, with γ=1, for each of the 30 contracts over all 70 dates.  For 
example, the first entry in the top table shows that in 39% of the 70 cases, the two-factor model 
outperforms the one-factor model for one week ahead pricing of the 0.5x1 swaptions. The starred cells 
indicate that the proportion is significantly different from 50%. All tests are conducted at the 1% level of 
significance. 
 
______________________________________________________________________________________ 
 

Expiration Swap Maturity 2P vs 1P 4PCA vs 2P 4PCA vs 1P 
______________________________________________________________________________ 

 
0.5 1 .39 .22* .28* 

0.5 2 .53 .37 .50 
0.5 3 .32* .25* .24* 

0.5 4 .31* .49 .28* 

0.5 5 .57 .34* .28* 

 
1 1 .53 .70† .56 
1 2 .44 .59 .37 
1 3 .46 .60 .50 
1 4 .60 .50 .51 
1 5 .61 .46 .57 

 
2 1 .31 .67† .46 
2 2 .49 .59 .57 
2 3 .50 .61 .63 
2 4 .78† .44 .72† 

2 5 .82† .31* .84† 

 
3 1 .74† .22* .36 
3 2 .41 .53 .37 
3 3 .31* .70† .44 
3 4 .36 .65† .57 
3 5 .67† .57 .70 

 
4 1 .88† .31* .90† 

4 2 .71† .51 .75† 

4 3 .65† .53 .71† 

4 4 .63 .37 .40 
4 5 .53 .27* .37 

 
5 1 .81† .53 .61 
5 2 .64 .27* .36 
5 3 .44 .40 .37 
5 4 .50 .31* .46 
5 5 .64 .46 .61 

 
Average .55† .46* .51 

______________________________________________________________________________________ 
 
 
 
 
 



Table 9 
 

Standard Deviation Ratios for Hedging Swaptions 
 

This table presents the ratio of standard deviations of the hedged and unhedged portfolios for the one-factor 
and two-factor parametric and the four-factor PCA models, for swaptions, one week out-of-sample. In the 
hedge portfolios, the number of hedging instruments used equals the number of factors in the model. The 
swaption data corresponds to biweekly data from March 1, 1998 – October 31, 2000, consisting of 70 data 
sets. Therefore, the standard deviations are computed using the values of the hedged and unhedged 
swaption portfolios over 70 weeks. The averages of the standard deviation ratios across all contracts are 
also reported, one to four weeks out-of-sample, for an aggregate analysis. 
______________________________________________________________________________________ 
 

Expiration Swap Maturity One-Factor Two-factor Four-factor 
______________________________________________________________________________ 

 
0.5 2 0.23 0.26 0.23 
0.5 3 0.20 0.40 0.21 
0.5 4 0.19 0.44 0.20 
0.5 5 0.19 0.46 0.20 

 
1 2 0.25 0.26 0.24 
1 3 0.23 0.26 0.23 
1 4 0.23 0.35 0.23 
1 5 0.22 0.33 0.21 

 
2 2 0.33 0.26 0.33 
2 3 0.33 0.26 0.42 
2 4 0.31 0.28 0.25 
2 5 0.30 0.30 0.25 

 
3 2 0.41 0.30 0.43 
3 3 0.39 0.49 0.29 
3 4 0.37 0.32 0.29 
3 5 0.37 0.31 0.31 

 
4 2 0.47 0.38 0.33 
4 3 0.41 0.34 0.33 
4 4 0.39 0.30 0.30 
4 5 0.38 0.29 0.29 

 
5 2 0.49 0.38 0.42 
5 3 0.47 0.34 0.35 
5 4 0.46 0.34 0.33 
5 5 0.44 0.33 0.36 

 
                       Average (1 week out) 0.34 0.33 0.29 

Average (2 weeks out) 0.35 0.35 0.30 
Average (3 weeks out) 0.36 0.39 0.33 
Average (4 weeks out) 0.37 0.40 0.33 

______________________________________________________________________________________ 



Table 10 
 

Absolute Hedging Errors for Swaptions 
 

This table presents the root mean squared errors (in basis points) of the hedged and unhedged portfolios for 
the one-factor and two-factor parametric and the four-factor PCA models, one week out-of-sample. In the 
hedge portfolios, the number of hedging instruments used equals the number of factors in the model. The 
swaption data corresponds to biweekly data from March 1, 1998 – October 31, 2000, consisting of 70 data 
sets. The root mean square of the hedging errors for a contract, across all dates, is multiplied by 10,000 so 
that it can be interpreted as a basis point error. The corresponding root mean squared errors for the 
unhedged swaptions are also presented, for comparison. 
______________________________________________________________________________________ 
 

Expiration Swap Maturity Unhedged 
Swaption 

One-Factor Two-factor Four-Factor 

______________________________________________________________________________ 
 

0.5 2 12.1 6.2 3.6 3.0 
0.5 3 18.1 7.0 5.9 4.2 
0.5 4 23.3 7.7 6.3 5.2 
0.5 5 28.2 8.2 6.5 5.9 

 
1 2 13.1 5.5 3.6 3.2 
1 3 18.9 6.6 5.0 4.6 
1 4 24.1 7.7 8.8 5.7 
1 5 28.9 8.2 8.7 6.2 

 
2 2 13.1 5.6 3.6 4.3 
2 3 18.7 7.4 5.0 8.4 
2 4 23.0 8.4 6.6 5.8 
2 5 27.5 9.5 8.4 7.0 

 
3 2 12.6 5.8 3.8 5.4 
3 3 17.3 7.4 8.5 5.0 
3 4 21.9 8.7 7.2 6.3 
3 5 26.9 10.6 8.1 8.4 

 
4 2 11.4 5.7 4.3 3.7 
4 3 15.8 7.0 5.5 5.3 
4 4 20.9 8.5 6.3 6.3 
4 5 25.9 10.2 7.7 7.6 

 
5 2 10.8 5.4 4.1 4.5 
5 3 16.4 7.8 5.6 5.7 
5 4 21.5 9.9 7.2 7.1 
5 5 26.3 11.7 8.8 9.5 

______________________________________________________________________________________ 



Table 11 
 

Comparison of Parametric and PCA Models in Hedging Swaptions 
 

This table presents the fraction of times one model outperforms the other model in hedging forecasts, for 
the one-factor and two-factor parametric and the four-factor PCA models, one week out-of-sample. In the 
hedge portfolios, the number of hedging instruments used equals the number of factors in the model. The 
swaption data corresponds to biweekly data from March 1, 1998 – October 31, 2000, consisting of 70 data 
sets. Therefore, for each contract, the proportions are computed from a comparison of 70 hedging errors. 
____________________________________________________________________________________________ 
 

1 week out-of-sample 
 

____________________ 

2 weeks out-of-sample 
 

___________________ 
 

4 weeks out-of-sample 
 

___________________ 

Expiration Swap 
Maturity 

2 vs 1 4 vs 1 4 vs 2 2 vs 1 4 vs 1 4 vs 2 2 vs 1 4 vs 1 4 vs 2 
___________________________________________________________________________________ 

 
0.5 2 0.87 0.87 0.66 0.93 0.99 0.68 0.94 0.99 0.75 
0.5 3 0.81 0.86 0.67 0.93 0.90 0.71 0.93 0.96 0.84 
0.5 4 0.67 0.87 0.76 0.77 0.88 0.75 0.82 0.94 0.79 
0.5 5 0.59 0.81 0.73 0.70 0.84 0.72 0.78 0.91 0.78 

 
1 2 0.81 0.77 0.61 0.91 0.90 0.64 0.97 0.97 0.65 
1 3 0.71 0.73 0.54 0.86 0.88 0.58 0.94 0.94 0.65 
1 4 0.63 0.70 0.57 0.74 0.86 0.57 0.79 0.93 0.62 
1 5 0.56 0.69 0.61 0.62 0.78 0.74 0.71 0.84 0.72 

 
2 2 0.73 0.66 0.50 0.78 0.75 0.57 0.90 0.85 0.53 
2 3 0.67 0.53 0.31 0.72 0.65 0.30 0.94 0.74 0.31 
2 4 0.59 0.69 0.59 0.65 0.68 0.51 0.82 0.84 0.62 
2 5 0.61 0.64 0.63 0.62 0.67 0.57 0.68 0.78 0.53 

 
3 2 0.63 0.61 0.46 0.70 0.67 0.52 0.76 0.68 0.49 
3 3 0.66 0.67 0.60 0.64 0.70 0.55 0.74 0.74 0.53 
3 4 0.66 0.69 0.57 0.68 0.67 0.57 0.74 0.72 0.56 
3 5 0.69 0.66 0.56 0.65 0.65 0.67 0.75 0.74 0.62 

 
4 2 0.64 0.63 0.53 0.71 0.72 0.54 0.79 0.74 0.51 
4 3 0.70 0.69 0.60 0.65 0.67 0.61 0.76 0.68 0.51 
4 4 0.77 0.73 0.61 0.70 0.65 0.62 0.79 0.75 0.59 
4 5 0.74 0.71 0.60 0.70 0.67 0.59 0.72 0.66 0.53 

 
5 2 0.73 0.66 0.50 0.75 0.62 0.45 0.74 0.68 0.49 
5 3 0.81 0.76 0.54 0.72 0.74 0.62 0.76 0.71 0.60 
5 4 0.80 0.77 0.66 0.72 0.68 0.62 0.71 0.69 0.62 
5 5 0.73 0.66 0.47 0.72 0.70 0.58 0.69 0.66 0.50 

 
Average (1 week out) 0.70 0.71 0.58 0.73 0.75 0.59 0.80 0.80 0.60 

_____________________________________________________________________________________________ 



Table 12 
 

Comparison of Models Using Different Hedging Instruments 
 

This table presents the fraction of times one model specification outperforms the same model using 
different hedging instruments, one week out-of-sample, for the one-factor and two-factor parametric 
models. The swaption data corresponds to biweekly data from March 1, 1998 – October 31, 2000, 
consisting of 70 data sets. Underlying discount bonds are used as hedging instruments, and are labeled as 
follows. The bond expiring on the swaption expiration date is labeled “1”, while the bond expiring on the 
underlying swap maturity date is labeled “4”. Bonds “2” and “3” correspond to bonds with maturities 
equally spaced between the swaption expiration date (bond 1) and the underlying swap maturity date (bond 
4).  For the one-factor model, the hedge using bond 4 is used as the benchmark hedge. For the two-factor 
model, the hedge using bonds 1 and 4 is the benchmark. When using three hedging instruments within the 
two-factor model, the third bond is chosen to be the middle maturity between bonds 1 and 4. The four 
hedging instruments within the two-factor model are bonds 1, 2, 3, and 4. 
 
________________________________________________________________ 
 
Model Comparison       Fraction of wins 
__________________________________________________________ 
 
One-Factor Parametric Model 
 
 One vs two instruments (4 vs 4,3)  0.52 
 
 One vs three instruments (4 vs 4,3,2)  0.54 
 
 One vs four instruments (4 vs 4,3,2,1)  0.55 
 
 One instrument (4 vs 3)    0.53 
 
 One instrument (4 vs 2)    0.57 
 
 One instrument (4 vs 1)    0.66 
 
Two-Factor Parametric Model 
 
 Two vs three instruments   0.50 
 
 Two vs four instruments    0.53 
__________________________________________________________ 

 



 Figure 1 
 

Average Percentage Errors for Swaptions 
 

This figure presents plots of the average percentage errors, one week out-of-sample, for swaptions across 
underlying swap maturities, for each expiration, for the one-factor and two-factor parametric and the four-
factor PCA models. The plots are presented for three values of γ; γ=0 (dotted line), γ=0.5 (hashed line), and 
γ=1 (solid line). The swaption data corresponds to biweekly data from March 1, 1998 – October 31, 2000, 
consisting of 70 data sets. The swaptions are priced using Monte Carlo simulation with 4000 paths for the 
evolution of the term structure. In generating the paths, the same seeds for the random number generator 
were used to ensure consistency across the models. 
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Figure 2 
 

Average Percentage Errors for Caps 
 

This figure presents plots of the average percentage errors, one week out-of-sample, for caps across strikes 
for each maturity, for the one-factor and two-factor parametric and the four-factor PCA models. The plots 
are presented for three values of γ; γ=0 (dotted line), γ=0.5 (hashed line), and γ=1 (solid line). The cap data 
corresponds to biweekly data from March 1 – December 31, 1998, consisting of 22 data sets. The in sample 
optimizations for the models were conducted over four unknown parameters, with caps being priced using 
Monte Carlo simulation with 4000 paths for the evolution of the term structure. In generating the paths, the 
same seeds for the random number generator were used to ensure consistency across the models. 
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Figure 3 
 

Box and Whiskers Plots of Swaption Pricing Errors 
 

This figure presents the box and whiskers plots of the one week out-of-sample pricing errors for the one-
factor and two-factor parametric and the four-factor PCA models with γ=1, for swaptions across expirations 
and underlying swap maturities. The swaption data corresponds to biweekly data from March 1, 1998 – 
October 31, 2000, consisting of 70 data sets. The swaptions are priced using Monte Carlo simulation with 
4000 paths for the evolution of the term structure. In generating the paths, the same seeds for the random 
number generator were used to ensure consistency across the models. In each figure, the first box 
corresponds to the one-factor parametric model, the second box to the two-factor parametric model, and the 
third box to the four-factor PCA model. 
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Figure 4 
 

Estimated Volatilities of Forward Rates Implied out from Swaption and Cap Prices 
 

The figures presents the time series of estimated forward rate volatilities for the one-factor and two-factor 
parametric and the four-factor PCA models. There are 70 volatility curves (22 for caps) on each figure, 
each curve separated by two weeks. The data for these curves are derived from the 70 optimization 
problems (22 optimizations for caps). 
 



Figure 5 
 

Box and Whiskers Plots of Swaption Hedging Errors 
 
This figure presents the box and whiskers plots for the one week out-of-sample hedging errors for the one-
factor and two-factor parametric and the four-factor PCA models (with γ=1), for swaptions across all 
expirations and underlying swap maturities. The corresponding plots for the unhedged swaptions are 
presented for comparison purposes. In each figure, the first box corresponds to the unhedged swaption, the 
second box to the one-factor parametric model, the third box to the two-factor parametric model, and the 
fourth box to the four-factor PCA model. 
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Figure 6 
 

Swaption Hedge Portfolio for Four-factor PCA Model 
 

This figure presents the time series of the positions in each of the four hedging instruments in the hedge 
portfolio for a sample swaption (3 x 3), using the four-factor PCA model. The swaption data corresponds to 
biweekly data from March 1, 1998 – October 31, 2000, consisting of 70 data sets. Therefore, the time series 
of bond positions is for each of the 70 weeks. The bond expiring on the swaption expiration date is labeled 
“1”, while the bond expiring on the underlying swap maturity date is labeled “4”. Bonds “2” and “3” 
correspond to bonds with maturities equally spaced between the swaption expiration date (bond 1) and the 
underlying swap maturity date (bond 4). 
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