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Abstract

This article investigates the pricing of options when a need arises to carry a path dependent

auxiliary state variable. Examples of such problems include the pricing of interest rate claims

in a Heath Jarrow Morton paradigm, where the underlying forward rates follow a Markovian

process, and the pricing of equity options, when the underlying asset price follows a GARCH

process. In the former case, the primary state variable is the spot interest rate, and the auxiliary

state variable is the accrued variance of the current spot rate. In the latter case, the primary

state variable is the asset price, and the auxiliary state variable is the path dependent statistic

representing local volatility. An efficient algorithm is developed for pricing claims under these

type of processes. Illustrative examples are presented that demonstrate the efficiency of the

algorithm and conditions are developed that ensure the algorithm will produce accurate prices.



This article is concerned with the efficient pricing of contingent claims when a need arises

to carry a path dependent auxiliary state variable. These problems are often encountered when

pricing specialized derivative claims such as average rate options, where the auxiliary state

variable is the average price to date, or lookback options, where the auxiliary state variable

might be the maximum price to date. There are other problems, however, where the auxiliary

variable arises more naturally in the underlying dynamics of the process rather than being defined

by the nature of the financial claim. For example, consider pricing interest rate claims under the

assumption that volatilities of forward rates belong to a one factor Heath Jarrow Morton (1992)

(hereafter HJM) family, where bond prices can be represented by a low dimensional Markovian

system. In such models, the primary underlying state variable is the short rate and the second,

auxiliary state variable, is a path statistic that corresponds to the accrued variance of the spot

rate. As a second example, consider the pricing of an equity derivative when the underlying

dynamics are given by a GARCH process. Here the primary state variable is the stock price

and the second auxiliary state variable is a path statistic, representing the local volatility.

Several authors have established algorithms for implementing option models with auxiliary

state variables. Most methods rely on a lattice scheme for the primary state variable, and the

auxiliary state variable is represented by an array of values at each node in the tree. Examples of

this approach include Ritchken, Sankarasubramanian, and Vijh (1993), Hull and White (1993a),

and Barraquand and Pudet (1996).1 In most applications, the number of possible values of the

auxiliary variable at a node equals the number of distinct paths to the node. In this case,

it is not possible to track every possible value of the auxiliary variable, and instead a grid of

representative values is established.2 Option pricing then proceeds at each point in the grid,

for each node in the lattice. Typically, it is necessary to interpolate option prices at successor

points when solving backwards through the tree. Li, Ritchken, and Sankarasubramanian (1995)

(hereafter LRS) apply this approach to pricing Markovian interest rate models in the HJM

family, where volatility varies with the level of rates, and Ritchken and Trevor (1999) apply

similar ideas to price options under GARCH processes, where volatility is persistent and path

dependent. For the most part, formal proofs of convergence of prices in these papers have been

absent, but illustrations of convergence of prices have been provided, as the lattice (for the

primary variable) and the grid (for the auxiliary variable) have been refined.

In this article we focus primarily on the efficient implementation of the low dimensional

Markovian HJM models that were described by Ritchken and Sankarasubramanian (1995). They

identified the family of volatility structures for forward rates that permitted a HJM models to

be represented by a two state Markovian system, thereby allowing American claims to be priced,

1This is not the only approach. Chiarella and El-Hassan (1997), for example, look at such a problem and

evaluate prices as path integrals using fast Fourier transform techniques.
2For example, it might be possible to identify the maximum and minimum value of the auxiliary state variable

to each node. Then this range can be split up into buckets of equal width.

1



without the need to use bushy trees. Under their restrictions, the dynamics of the entire term

structure depends on the short rate and a second auxiliary state variable that can be viewed

as an accrued variance statistic. Li, Ritchken, and Sankarasubramanian (1995) provide an

algorithm for pricing interest rate sensitive claims, under any of the volatility structures in this

restricted HJM family. Our main contribution here will be to develop a new algorithm which is

a magnitude of order more efficient than the LRS algorithm.

While our primary focus is to price interest sensitive claims, we also consider applications

involving auxiliary state variable methods to pricing equity options under GARCH processes.

We develop an algorithm that can be used to price claims under the NGARCH model of Duan

(1995). In light of the connections between GARCH and bivariate stochastic volatility, we can

also use this algorithm to obtain American option prices for claims under an array of bivariate

stochastic volatility processes.

The paper proceeds as follows. In section 1 we review HJM models where we focus on their

Markovian family and the current procedure for pricing such claims. In section 2 we present

our algorithm, and prove that it is capable of producing reliable prices. Then, in section 3, we

illustrate the algorithm by considering the convergence rate of prices. In section 4 we consider

a second application involving pricing equity option contracts under GARCH and stochastic

volatility processes. Section 5 concludes.

1 Markovian HJM Models

Heath, Jarrow, and Morton (1992) have developed a paradigm for pricing interest rate claims

relative to a given term structure, that requires a specification of the volatility structure of

forward rates. Given a volatility function, a unique martingale measure can be identified under

which all interest rate claims can be priced as if the local expectations hypothesis holds. Let

f(t, T ) be the forward rate at date t for instantaneous riskless borrowing and lending at date T.

The evolution of forward rate under this martingale measure is given by

df(t, T ) = µf (t, T )dt+ σf (t, T )dw(t)

with f(0, t) given for all t, and, as shown by HJM, the drift term is uniquely determined by the

no arbitrage condition :

µf (t, T ) = σf (t, T )

8 T
t
σf (t, s)ds.

Unfortunately, the computation of prices is typically complex because the evolution of the term

structure under the martingale measure is usually not Markovian with respect to a finite dimen-

sioned state space. As a result, lattice based numerical procedures for pricing usually results

in trees that grow exponentially with the number of time periods. Simulation models are often
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employed to solve typical pricing problems such as pricing claims on a 10 year quarterly deal,

where there might be 40 cash flow dates, and hence at least 40 model dates. While simula-

tion models can be reasonably effective, when pricing American claims, there still remain some

difficulties.3

A major hurdle associated with implementing models in the HJM paradigm involves the

estimation of parameters. The parameters are typically implied out from actively traded volatil-

ity products such as caps and swaptions. Since the highly non linear estimation procedure

requires frequent calls to numerical routines that price these products, these routines need to

be extremely efficient. The presence of path dependency here can create a severe hinderence

to a successful implementation. Recently, a family of models have been developed that avoids

some of the calibration issues without resolving the path dependency problems. These models,

collectively referred to as market models, preclude arbitrage among bonds, keep rates positive,

and non exploding, and price caps or swaptions according to the Black model. These models

belong to the HJM family, but utilize discrete compounding, rather than continuous compound-

ing, and limit themselves to a set of rates (maturities) that are commonly quoted in financial

markets. The initial market models incorporate lognormal volatilities, but extensions to permit

fatter tailed distributions have been made.4 Market models permit easy calibration to caps or

swaptions, but they do not resolve the path dependence problem. As a result, valuation of

general interest rate claims remains complex because of the total path dependence.

It turns out that in the HJM framework there is an important family of volatility structures

for which the dynamics of forward rates can be represented by a finite dimensioned Markovian

system. Ritchken and Sankarasubramanian (1995) have identified necessary and sufficient con-

ditions on volatility structures which do not completely remove the path dependence, but rather

capture it by a single sufficient statistic. Specifically, they focus on classes of the form:

σf (t, T ) = σf (t, t)e
−
$ T
t
κ(x)dx.

Here κ(x) is some exogenously provided deterministic function and σf (t, t) is the volatility of

spot rate at date t, which could depend on the entire set of term structure information at that

date. The class of volatilities that permit this representation is quite large, and includes the

Gaussian models studied by Vasicek (1977), HJM and by Hull and White (1993a). Interestingly,

the class imposes no particular restrictions on the structure of the spot rate volatility, and

hence permits volatilities to fluctuate according to the level of the spot rate. In this paper, for

simplicity, we will assume the volatility of the spot rate has constant elasticity, or:

σf (t, t) = σ[r(t)]γ . γ ≥ 0.
3For a review of the literature see Boyle, Broadie, and Glasserman (1997), and Longstaff and Schwartz (2000).
4For example, see Andersen and Andreasen (1997), Brace, Gatarek, and Musiela (1997) and Hull and White

(1999).
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With this type of volatility function, the entire term structure can be represented by a Markovian

model with two state variables, namely the short rate, r(t), and the auxiliary path dependent

statistic, Φ(t) =
$ t
0 σ

2
f (s, t)ds. The dynamics of the state variables are:

dr(t) = µ(r,Φ, t)dt+ σf (t, t)dw(t) (1)

dΦ(t) = (σ2f (t, t)− 2κ(t)Φ(t))dt, (2)

where

µ(r,Φ, t) = κ(t)[f(0, t)− r(t)] + Φ(t) + d

dt
f(0, t),

and analytical solutions exist that permit the entire term structure to be recovered at any date,

given the state variables.5

Given a Markovian representation for the dynamics of the term structure, American claims

can be priced without the need to build bushy trees. An algorithm that accomplishes this

is provided by Li, Ritchken, and Sankarasubramanian (1995). They first use the following

transformation on the spot rate process (1) to get a form with constant volatility.

Y (t) =

8
1

σf (t, t)
dr(t).

Let r(t) = h(Y (t)) be the inverse function. Then the new state variables are Y (t) and Φ(t) with

dynamic

dY (t) = m(Y,Φ, t)dt+ dw(t) (3)

dΦ(t) = n(Y,Φ, t)dt (4)

where

m(Y,Φ, t) =
∂Y (t)

∂t
+ µ(r,Φ, t)

∂Y (t)

∂r(t)
+
1

2
σ2f (t, t)

∂2Y (t)

∂r(t)2

n(Y,Φ, t) = σ2f (t, t)− 2κ(t)Φ(t).

Notice that both m(Y,Φ, t) and n(Y,Φ, t) are linear in Φ. We will use this property to construct

a recombining lattice in next section.

Since there is only one source of uncertainty and Φ is a path statistic, if we follow the

traditional tree building approach, we will get a one dimensional bushy tree. However, notice

that the instantaneous volatility of Y (t) is constant, 1. At each slice of time t, there would

be several nodes having the same value of Yt. If we aggregate those nodes with the same Yt

together, the topology of the tree would look like a reconnecting trinomial tree. But keep in

mind that at each node there are many Φt values associated with the same Yt (as many as the
5More recently, Inui and Kijima (1999) and Chiarella and Kwon (2000), by adding additional state variables,

have further generalized the class of volatility structures that permit Markovian representations.
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number of distinct paths to reach Yt) and the transition probability for (Yt,Φt) is different from

(Yt,Φ
I
t) if Φt W= ΦIt.

As we roll forward through the tree, it is not possible to keep track of all the Φ values at

each node. LRS use a forward scan through the tree to produce the minimum and maximum

Φ values at each node. Then, a grid of K equally spaced values between the maximum and

minimum are used to represent the state variables at that node. Given, the state variables

at any node, an analytical solution for the term structure exists, and at the expiration date,

boundary prices for the option contract can be established. The tree is then rolled back, with

appropriate interpolations used, to recover the date 0 price. LRS show that in order to get

convergence in prices it might be necessary to use a rather fine partition for the Φ variable.

That is K may have to be fairly large.

2 A New Model for Markovian HJM Models

In this section, we first build a reconnecting lattice where, at each node, the grid of values for

the possible values of the auxiliary state variable, is replaced by a single value, representing the

conditional expectation of the auxiliary state variable. In the second part of this section, we

show how this “reduced lattice”, which tracks less information than the original lattice, can be

used to generate approximate prices for option contracts. Conditions are identified that ensure

the resulting algorithm produces approximations that converge to the true prices as the time

partition of the lattice is refined.

2.1 Construction of a Reduced Lattice

We start by building a trinomial lattice for the processes (3) and (4).6 According to the lat-

tice, from node (Yt,Φt), we will move to nodes (Y
+
t+1,Φ

+
t+1), (Yt+1,Φt+1) and (Y

−
t+1,Φ

−
t+1) (see

figure 1a), where Yt+1 = Yt and Y
+
t+1 − Yt = Yt − Y −t+1 = λ

√Pt, with probabilities
p+(Yt,Φt, t) = 1

2λ2 +
m(Yt,Φt,t)

√
Pt

2λ

p0(Yt,Φt, t) = 1− 1
λ2

p−(Yt,Φt, t) = 1
2λ2 −

m(Yt,Φt,t)
√
Pt

2λ

(5)

Since the process for Φ is locally deterministic (see equation (4)), the values Φ+t+1, Φt+1 and

Φ−t+1 are equal and fully determined by current state variables (Yt,Φt). Or

Φ+t+1 = Φt+1 = Φ
−
t+1 = Φ

∗
t+1(Yt,Φt, t) = n(Yt,Φt, t)Pt+ Φt (6)

6Notice that if λ = 1 the lattice reduces to a binomial lattice.
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Because both m(Y,Φ, t) and n(Y,Φ, t) are linear in Φ, we see that p+, p0, p− and Φ∗t+1 are
all linear with respect to Φt.

In summary, then, our lattice consists of a set of path reconnecting “nodes” for the Y values.

For a given node, at each date, the number of possible Φ values equals the number of paths to

the node. We will refer to this lattice as the bushy lattice.

Our first phase of the algorithm is to replace the second state variable, namely the path

statistic, with a new state variable that can be used to create a new lattice that is not bushy.

Hopefully, this can be done without a significant loss of information. Towards, this goal, we

shall replace the second state variable, by its conditional expectation. Specifically, let

φ̄t(yt) = Et[Φt|Yt = yt]

represent the conditional expectation. Further, we denote φ̄t = φ̄t(yt) if its meaning in the

context is clear, and we shall refer to the lattice of values generated by (yt, φ̄t) as the reduced

lattice. The idea here is that, conditional on Yt = yt, the distribution of Φt values is concentrated

around its expectation, and deviations from this expected value will have small effects on pricing.

This intuition is formalized later on, where convergence issues are addressed.

It turns out that computing these exact conditional expectations, and hence setting up the

reduced lattice, can be done without explicitly requiring information from the original bushy

lattice! Moreover, given these values up to date t, the exact probability of reaching a particular

node at date t + 1 can also be computed exactly, without considering all the individual paths

that lead to the node in the bushy tree. These results are summarized in Proposition 1 below.

Proposition 1

(i) The exact probability of reaching an individual node at time t + 1, in the bushy tree, ie.

P (Yt+1 = yt+1), can be computed given information on the reduced tree up to date t. Specifically:

P (Yt+1 = yt+1) =
3
yt

P (Yt+1 = yt+1|Yt = yt,Φt = φ̄t)P (Yt = yt) (7)

where P (Yt+1 = yt+1|Yt = yt,Φt = φ̄t) is given by (5) if |yt+1 − yt| ≤ λ
√Pt and 0 otherwise;

(ii) The exact conditional expectations on the bushy tree at time t + 1, φ̄t+1(yt+1), can be

computed recursively from information on the reduced tree at date t. Specifically:

φ̄t+1(yt+1) =
3
yt

Φ∗t+1(yt, φ̄t(yt), t)P (Yt = yt|Yt+1 = yt+1) (8)

where

P (Yt = yt|Yt+1 = yt+1) = P (Yt+1 = yt+1|Yt = yt,Φt = φ̄t)P (Yt = yt)

P (Yt+1 = yt+1)
, (9)

and Φ∗t+1(yt,φt, t) is given by (6).
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Proof : see Appendix A

Equation (7) — (9) are exactly the natural ways to update information if we only had one Φt

(that is E[Φt|Yt]) associated with each node. Equation (7) says the probability of reaching node
Yt+1 = yt+1 comes from contributing nodes (yt, φ̄t(yt)) at time t; equation (9) is the portion of

the probability at node Yt+1 = yt+1 that comes from node (yt, φ̄t(yt)); and equation (8) says

the mean value of Φt+1 at node Yt+1 = yt+1 is the weighted average of Φt+1 values that come

from nodes (yt, φ̄t(yt)). Therefore, by using equation (7) — (9), one can use the reduced lattice

to establish exactly the same results that we would obtain using the full bushy tree.

The key to this proof relies on the fact that the transition probabilities p+(Yt,Φt, t), p0(Yt,Φt, t),

p−(Yt,Φt, t) and the Φ evolution function Φ∗t+1(Yt,Φt, t) are all linear in Φt. As a result, this
updating scheme can work for higher conditional moments E[Φkt |Yt]. Hence, the distribution of
the random variable Φt|Yt = yt, can, if necessary, be better approximated using higher moments
as additional state variables. As we shall see, however, in this application, such higher moments

are unnecessary.

2.2 Construction of Option Prices on the Reduced Lattice

In this section, we see how option prices can be approximated on the reconnecting tree (yt, φ̄t)

we have just constructed. Given the state variables at any node, one can reconstruct the term

structure, and at the expiration date, boundary prices for the option contract can be established.

We will use dynamic programming, rolling back on the tree, to get the option price at date 0.

Because we are losing information by keeping only the conditional expectation of Φ, we can’t

expect to get an exact option value by applying the traditional backward induction. We will,

however, start from the usual one period backward recursive approach, and make modifications

as we proceed.

(Yt,Φt) ´
´
´
´
´
3́

-
Q
Q
Q
Q
Q
Qs

p+

p0

p−

(Y +t+1,Φ
+
t+1)

(Yt+1,Φt+1)

(Y −t+1,Φ
−
t+1)

(Y +t , Φ̄
+
t )

(Yt, Φ̄t)

(Y −t , Φ̄
−
t )

Q
Q
Q
Q
Q
Qs-

´
´
´
´
´
3́ (Yt+1,

Φ3t+1
Φ2t+1
Φ1t+1

)

Figure 1a Figure 1b

Figure 1: Trinomial Lattice Construction

Since (Yt,Φt) are state variables, the option value can be expressed as a function g(yt,φt)

at time t on state (yt,φt). If we had computed all g(yt+1,φt+1) at time t + 1, the backward
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induction at time t, on the node (yt,φt) shown on figure 1a, is

g(yt,φt) = e
−rtPt[p+g(y+t+1,φ

+
t+1) + p0g(yt+1,φt+1) + p−g(y

−
t+1,φ

−
t+1)] (10)

where rt = h(yt); p+, p0, p− are given by (5) and φ+t+1 = φt+1 = φ−t+1 = φ∗t+1 is given by (6).

Unfortunately, on our lattice, the option values at the successor nodes Φt+1 = φ∗t+1 are not
available. But recall that we used (Yt+1,Φ

1
t+1), (Yt+1,Φ

2
t+1) and (Yt+1,Φ

3
t+1), which came from

(Y +t , Φ̄
+
t ), (Yt, Φ̄t) and (Y

−
t , Φ̄

−
t ) respectively (see figure 1b), to compute E[Φt+1|Yt+1].

If we had computed the option value at these three points at time t+1, we could use quadratic

interpolation/extrapolation to approximate the date t option value g(yt+1,φ
∗
t+1). In particular,

ĝ(yt+1,φ
∗
t+1) =

(φ∗t+1 − Φ2t+1)(φ∗t+1 − Φ3t+1)
(Φ1t+1 − Φ2t+1)(Φ1t+1 − Φ3t+1)

g(yt+1,Φ
1
t+1) +

(φ∗t+1 − Φ1t+1)(φ∗t+1 − Φ3t+1)
(Φ2t+1 − Φ1t+1)(Φ2t+1 − Φ3t+1)

g(yt+1,Φ
2
t+1) +

(φ∗t+1 − Φ1t+1)(φ∗t+1 − Φ2t+1)
(Φ3t+1 − Φ1t+1)(Φ3t+1 − Φ2t+1)

g(yt+1,Φ
3
t+1) (11)

Putting these together, we would, at time t, have :

g(yt,φt) = e
−rtPt[p+ĝ(y+t+1,φ

∗
t+1) + p0ĝ(yt+1,φ

∗
t+1) + p−ĝ(y

−
t+1,φ

∗
t+1)], (12)

where rt = h(yt); p+, p0, p− are given by (5); φ∗t+1 is from equation (6) and ĝ(y+t+1,φ
∗
t+1),

ĝ(yt+1,φ
∗
t+1) and ĝ(y

−
t+1,φ

∗
t+1) are approximation option values at time t+ 1 given by (11).

Actually, Equation (12) is used to compute option prices at g(Yt,Φ
1
t ), g(Yt,Φ

2
t ) and g(Yt,Φ

3
t )

at node (Yt, Φ̄t). Then the backward induction continues until we get the option price g(y0,φ0)

at time 0.

The following proposition gives the convergence property of this algorithm.

Proposition 2

If the function φ̄t(y) = E[Φt|Yt = y] is uniformly Lipschitz in y, i.e., there exist a M1 > 0,

s.t.

|φ̄t(y1)− φ̄t(y2)| ≤M1|y1 − y2|, 0 < t < T
and |∂ig(y,φ)

∂φi
| ≤ M2, i = 1, 2, 3, for some M2 > 0, then the option price g(y0,φ0) computed by

recursively applying (11)-(12) converges to the true option value as Pt→ 0.

Proof : see Appendix B.

The bounded derivatives condition is the regular sufficient condition for any lattice model

to converge to a continuous model. Since we are working around the conditional expectation

E[Φt|Yt] and using quadratic approximation, the uniformly Lipschitz condition ensures that
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the approximation error be small enough so that it won’t distract the convergence property.

Intuitively, this condition is quite weak and should hold in most practical cases.

The modification of the above backward induction to value American option is straightfor-

ward. In particular, the price given in equation (12) has to be compared to the exercise value

of the claim, with the higher of the two values recorded. The convergence for American claims

follows from Proposition 2.

3 An Illustrative Example

To illustrate the algorithm, we consider a three period example. The initial term structure is flat

at 6%. The volatility structure is given by σf (t, T ) = σr(t)γe−κ(T−t) where σ = 20%, γ = 1 and
κ = 2%. The time partition is one year. The value for λ is set at

0
3/2, implying the probability

of interest rates staying at their current level over a time increment is 1/3 ( see equation (5)).

Figure 2 shows the interest rate nodes over three years. At each “node” there is a matrix of

values. In the last row of the matrix, the values of the conditional expectations, Φ = φ̄, and the

probability of reaching this interest rate node, are recorded. The total probabilities of reaching a

particular node come from the contributing nodes that preceed, but are connected to this node.

These contributing probabilities are shown in the second column. For example, consider the

interest node r = 6% in year 2. The probability of reaching this node is 0.3380. There are three

paths that lead to this node. The first path is from the upper node in period 1, and this path

contributes 0.1109 of the probability; the second path is the horizontal path, and it contributes

0.1111; the final path is through the node r = 4.70% in year 1, and it contributes the remaining

0.1160. The first column, other than the last row, keeps track of the successor φ values from

the proceeding connected nodes. For example, in year 2, with the interest rate at 6%, there are

three φ values recorded. The top value represents the successor value from the φ̄ value in the

top node in period 1. Similarly, the second and third values represent the successor values from

the φ̄ values in the middle and bottom nodes in the first year.

Insert Figure 2 Here

Phase 1 of the algorithm is complete. We have the interest rate nodes and the relevant values

of φ at each node, for which option prices will be computed.

The second phase begins by recoding the terminal value of the claim at the expiration date,

which in our case is year three. In particular, we consider the pricing of a five year discount bond

with face value $1000. The strike price is set at the current forward price of $718.44. For each

setting of the state variables, at the expiration date, the entire term structure can be computed
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analytically, and the option price can be recorded. In figure 3 , the values of the underlying

discount bond and the option price are shown next to the φ values at each interest rate node.

Insert Figure 3 Here

Given these boundary values, we now use backward recursion and interpolation to compute

the option prices in previous years. Figure 2 shows the values on the lattice. For example,

consider the computations at the 6% interest rate node in year two, where the state variable

φ = 2.8224. The probabilities of an up, horizontal, and down jump, computed using equation

(5) are 0.3021, 0.3333, and 0.3646 respectively. The successor φ value is 4.1495. Going to the

next period, where interest rates could be 7.67%, 6%, or 4.70%, the option prices need to be

identified. The interpolated values at the three successor values are 0, 0, and 43.71 respectively.

Given the risk neutral probabilities and values, the option price of 15.01 can be computed. If

the contract was an American contract, and early exercise was a possibility, then this value

would have to be compared with the exercise value of the contract, which could be obtained

analytically, since the term structure is available. The date 0 value of this claim is $23.27.

Unlike the original algorithm of Li, Ritchken and Sankarasubramanian (1995), this algorithm

only requires at most three values of φ at each interest rate node.

4 Computational Experience

To illustrate the convergence behavior we consider the prices of European and American claims

in a model where the initial yield curve is flat at 6%, and the volatility structure of forward

rates is given by

σf (t, T ) = σr(t)γe−κ(T−t).

Table 1 shows the convergence property of the proposed algorithm. Here we take γ = 0.5,

σ = 0.02 and κ = 0.01. Two claims are used in the experiment: one is a 5-year call option on

a 10 year discount bond and the other is a 1 year call option on a 3 month spot rate. Both

European and American style contracts are considered. Simulation prices for European options

are generated using 100, 000 paths with 500 time partitions for each path, and the resulting

95% confidence intervals for the price provided a benchmark for establishing the precision of our

model prices.

Table 1 Here

The table shows that European prices generated by our algorithm are consistent with the

simulated prices.
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Table 2 tests the model with all kinds of different parameters. We consider a 6 month

European call option on a 3 month spot rate. Strike rate are set at 95%, 100% and 105% of at

the money strike. The parameters are the elasticity value, γ, the mean reversion parameter, κ

and the initial volatility of the spot rate, σ0, where σ0 = σrγ0 . These values were varied over

an extremely large range of values compared to their levels that are encountered in practice.

The prices produced by the algorithm are compared to prices generated using Monte Carlo

simulation.

Table 2 Here

20,000 sample paths are used to generate the simulation prices. Of the 144 cases reported,

there are only 5 cases where the interval did not contain the price produced by the algorithm.

Indeed, all the lattice prices differed from the simulation prices by no more than one half a basis

point, which in practice, is already well within the bid-ask spread.

The construction of the tree takes a little additional work beyond the regular trinomial model

but is about the same as the forward scan procedure used to find the minimum and maximum

values of Φ at each node in the LRS model. The prices produced by this algorithm are computed

in a fraction of the time it takes to compute prices by the LRS model. The computational effort

is about the same as the LRS algorithm with K = 3. As K in the LRS model increases, the

computational time increases at a rate much greater than the rate of increase in K. Indeed,

as K increases, significant time is spent in identifying the successor Φ values at which option

prices need to be interpolated. K ≥ 25 is a typical value recommended by Li, Ritchken and
Sakarasubramanian (1995).

5 NGARCH and Bivariate Stochastic Volatility Option Models

In this section we consider using the algorithm to price options under a generalized GARCH

process considered by Duan (1995). The conditional variance process of the limiting diffusion

for this model is a process which includes that used by Hull and White (1987) in their stochastic

volatility option pricing model.

Partition each time period (“day”) into m “trading periods” of width ∆t = 1/m. Label

these trading periods by consecutive integers starting from the beginning of the current period,

period 0. Let yt be the logarithmic price at the beginning of the t
th trading period, and let φt be

the variance for this trading period. Assume y0 and φ0 are given. The dynamics of the return

generating process are

yt+1 = yt + (rf + λ
0
φt − φt/2)∆t+

0
φt
√
∆tυt+1 (13)

φt+1 = φt + β0∆t+ φt[β1 + β2q − 1]∆t+ φtβ2
√
∆t[(υt+1 − c)2 − q], (14)

11



where q = (1 + c2), λ is the market price of risk, and {υt | t = 0, 1, 2, . . .} is a sequence of
independent standard normal random variables. Notice that when ∆t = m = 1 this equation

reduces to the NGARCH model considered by Duan (1995). Duan (1997) shows through an

equilibrium argument that a local risk neutralized valuation relationship holds, in which options

can be priced as if the economy were risk neutral under the pricing measure

yt+1 = yt + (rf − φt/2)∆t+
0
φt
√
∆t6t+1 (15)

φt+1 = φt + β0∆t+ φt[β1 + β2q − 1]∆t+ φtβ2
√
∆t[(6t+1 − c− λ

√
∆t)2 − q], (16)

where {6t | t = 0, 1, 2, . . .} is a sequence of independent standard normal random variables.

Duan (1997) shows that the limiting diffusion of the process for the price of the underlying

security in equations (13) and (14) is

dyt = (rf + λ
0
φt − φt/2)dt+

0
φtdW1(t) (17)

dφt = [β0 + (β1 + β2q − 1)φt]dt− 2cβ2φtdW1(t) +
√
2β2φtdW2(t) (18)

where dW1(t) and dW2(t) are independent Wiener processes. The limiting diffusion under the

locally risk neutralized measure is shown to be

dyt = (rf − φt/2)dt+
0
φtdZ1(t) (19)

dφt = [β0 + (β1 + β2q − 1 + 2λβ2c)φt]dt− 2cβ2φtdZ1(t) +
√
2β2φtdZ2(t) (20)

where dZ1(t) and dZ2(t) are independent Wiener processes.

Ritchken and Trevor (1999) provide a lattice based algorithm for pricing such contracts where

the primary state variable is the logarithmic price and the auxiliary state variable is the path

dependent local volatility. In their algorithm a grid of values at each node is used to proxy for

the local volatility. The grid size at a particular node is based on the maximum and minimum

local volatility levels that are feasible for paths that end up at the for the given node.

To build a trinomial lattice for process (15)-(16), we follow Ritchken and Trevor (1999) by

setting the grid size for y as κ
√
φ0
√Pt. The transition probability at node (yt,φt) is given by,

p+(yt,φt, t) = φt
2φ0κ2

+
(rf−φt/2)

√
φ0Pt

2κφ0

p0(yt,φt, t) = 1− φt
φ0κ2

p−(yt,φt, t) = φt
2φ0κ2

− (rf−φt/2)
√
φ0Pt

2κφ0

(21)

These probabilities are linear in φt, which is required for Proposition 1. Unfortunately, from

node (yt,φt) to node (yt+1,φt+1), the update for φt is given by,

φt+1 = f(φt, yt, yt+1) = f1(φt, yt, yt+1) + f2(φt, yt, yt+1)

12



where f1(φt, yt, yy+t) is some linear function of φt, but

f2(φt, yt, yt+1) = β2(
1

4
Pt3/2φ2t −

1

2
c∗φ3/2t − 2c∗(yt+1 − yt − rf

0Pt)0Ptφ1/2t )

with c∗ = c− λ√Pt, which is not affine in φt. Therefore Proposition 1 is not applicable. Or,

E[φt+1|yt+1] = E[f(φt, yt, yt+1)|yt+1] W= weighted average of f(E[φt|yt], yt, yt+1).

Since Proposition 1 is not valid, computing the exact conditional expectation of the auxiliary

state variable at each node cannot be accomplished by simple recursions. However, the function

f(φt, yt, yt+1) is close to linear in the sense that the weighted average of f(E[φt|yt], yt, yt+1) pro-
vides an excellent approximation toE[φt+1|yt+1]. Hence, as a heuristic, we take as a reduced form
lattice the sequence of points (yt, φ̃t(yt)) where φ̃t(yt) = weighted average of f(φ̃t−1(yt−1), yt−1, yt).
While the option prices produced by this algorithm are not guaranteed by Proposition 2, as we

shall see from numerical experiments, the prices serve as good approximations.

Table 3 shows the convergence of at the money European call option prices with expiration

dates ranging from 2 to 200 days that are obtained using the algorithm. The number of time

partitions for each day are shown in the columns. The prices obtained using the algorithm are

indicated. For example, consider the 20 day contract. If a lattice is constructed with one trading

opportunity per day, the price is $1.869. If the partition is refined to 5 trading opportunities

per day, then the price is $1.867. The “true” price obtained using Monte Carlo simulation of

the bivariate diffusion process given in equations (19) and (20) is, with 95% confidence, in the

interval [$1.864, $1.867]. The confidence intervals are based on simulations of 50, 000 paths, using

Black Scholes as a control variate and antithetic variables as variance reduction techniques. The

simulations also used 30 time partitions in each day.

Table 3 Here

From the table we see that the algorithm produces very accurate results, with convergence

occurring using 3 revisions a day. Moreover, in contrast to Ritchken and Trevor (1999), where

at each node in the lattice, a grid size of over 20 is recommended, here, in our lattice, at each

node, there are only 3 option prices stored. The computational times for these contracts are

therefore a magnitude of order lower than Ritchken and Trevor. Notice that the simulations are

of a bivariate diffusion, whereas the lattice prices are based off our simple reduced lattice.

The final experiment we conducted was to investigate the performance of the algorithm for

pricing contracts over different strike prices. Table 4 shows the results. The data used for these

experiments is taken from Ritchken and Trevor, so that comparisons can be made with their

algorithm.
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Table 4 Here

For each contract the 95% confidence intervals for the true bivariate diffusion option price is

displayed. Notice that the intervals, constructed using 50,000 simulations, antithetic variables

and the Black Scholes model as a control variate produces very tight confidence intervals. In

spite of this, almost all the contracts fell in the intervals. This suggests that the reduced form

lattice is a useful model for pricing options in a GARCH framework.

6 Conclusion

There are many problems in financial economics, where valuations require carrying an auxiliary

state variable. Oftentimes these auxiliary state variables arise based on the structure of the

particular financial contract. For example, there are a wide range of mortgage contracts, and

exotic option contracts that involve path dependent statistics that need to be carried along.

In other problems, such as in implementing Markovian HJM models, or in GARCH option

pricing models, the auxiliary state variable arises directly in the underlying dynamics of the

process. Current numerical procedures for computing prices of claims under these processes

require very fine partitions for the auxiliary state variable for each level of the primary state

variable. Examples of such algorithms include Hull and White (1993b), Li, Ritchken, and

Sankarasubramanian (1995) and Ritchken and Trevor (1999). In this article we have developed

a new algorithm which is much more efficient than the existing methods. In addition we have

identified conditions under which the algorithm is guaranteed to converge to accurate prices.

Examples of Markovian HJM models were provided to demonstrate the efficiency. In addition,

the approach is useful for pricing options under GARCH and stochastic volatility processes.

It would be desirable to extend the models here to handle problems with multiple auxiliary

state variables. Solving such problems is important especially if one is interested in implementing

HJM models with a richer volatility structure than that described by Ritchken and Sankarasub-

ramanian (1995). For example, Chiarella and Kwon (2000) have identified classes of volatility

structures for forward rates, that include the models of Ritchken and Sankarasubramanian as

special cases, and are Markov with respect to several state variables, most of which are path

statistics. It remains for future research to establish algorithms that can efficiently handle such

structures. It also remains for future research to investigate how our models can be extended to

handle problems with multiple stochastic drivers.
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Appendix A : Proof of Proposition 1

First, consider equation (7). We have:

P (Yt+1 = yt+1) =
3
(yt,φt)

P (Yt+1 = yt+1|Yt = yt,Φt = φt)P (Yt = yt,Φt = φt)

=
3
yt

3
φt|yt

P (Yt+1 = yt+1|Yt = yt,Φt = φt)P (Φt = φt|Yt = yt)P (Yt = yt)

But P (Yt+1 = yt+1|Yt = yt,Φt = φt) is given by (5) if |yt+1−yt| ≤ λ
√Pt and 0 otherwise, which

is linear with respect to φt. Therefore3
φt|yt

P (Yt+1 = yt+1|Yt = yt,Φt = φt)P (Φt = φt|Yt = yt)

= P (Yt+1 = yt+1|Yt = yt,
3
φt|yt

(Φt = φt)P (Φt = φt|Yt = yt))

= P (Yt+1 = yt+1|Yt = yt, E[Φt|Yt = yt])
= P (Yt+1 = yt+1|Yt = yt,Φt = φ̄t) (22)

This gives equation (7).

For equation (9), we have

P (Yt = yt|Yt+1 = yt+1) =
P (Yt+1 = yt+1, Yt = yt)

P (Yt+1 = yt+1)

=

�
φt|yt P (Yt+1 = yt+1, Yt = yt,Φt = φt)

P (Yt+1 = yt+1)

=

�
φt|yt P (Yt+1 = yt+1|Yt = yt,Φt = φt)P (Φt = φt|Yt = yt)P (Yt = yt)

P (Yt+1 = yt+1)

Using (22) again, we get equation (9).

Finally, for equation (8)

φ̄t+1(yt+1) = E[Φt+1|Yt+1 = yt+1]
=

3
(yt,φt)

Φ∗t+1(yt,φt, t)P (Yt = yt,Φt = φt|Yt+1 = yt+1)

=
3
(yt,φt)

Φ∗t+1(yt,φt, t)P (Φt = φt|Yt = yt, Yt+1 = yt+1)P (Yt = yt, |Yt+1 = yt+1)

Since Φt is a path statistic only up to time t,

P (Φt = φt|Yt = yt, Yt+1 = yt+1) = P (Φt = φt|Yt = yt)
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We have

φ̄t+1(yt+1) =
3
yt

3
φt|yt

Φ∗t+1(yt,φt, t)P (Φt = φt|Yt = yt)P (Yt = yt, |Yt+1 = yt+1)

According to equation (6), Φ∗t+1(yt,φt, t) is linear with respect to φt, therefore

φ̄t+1(yt+1) =
3
yt

Φ∗t+1(yt,
3
φt|yt

φtP (Φt = φt|Yt = yt), t)P (Yt = yt, |Yt+1 = yt+1)

=
3
yt

Φ∗t+1(yt, E(Φt|Yt = yt), t)P (Yt = yt|Yt+1 = yt+1)

=
3
yt

Φ∗t+1(yt, φ̄t(yt), t)P (Yt = yt|Yt+1 = yt+1)
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Appendix B : Proof of Proposition 2

Using the same arbitrage arguments as in the regular case, it is shown that option price g(y,φ, t),

in absence of arbitrage, satisfies the following partial differential equation :

1

2

∂2g

∂y2
+m(y,φ, t)

∂g

∂y
+ n(y,φ, t)

∂g

∂φ
+
∂g

∂t
− rtg = 0 (23)

The trinomial backward induction equation (10) is actually the finite difference approxima-

tion of the above PDE, with truncation error O[(Pt) 32 ]. The total effect of this truncation error
is at most N ×O[(Pt) 32 ] = T

PtO[(Pt)
3
2 ] = O(

√Pt), which says the price converges as Pt→ 0.

We use equation (11)-(12) instead of (10) in backward induction. The additional error we in-

troduce is the error of the quadratic approximation (11). In order to keep convergence property,

this error should have the same magnitude as truncation error O[(Pt) 32 ]. But the inerpola-
tion/extrapolation error in a quadratic approximation like (11) is given by (see Abramowitz and

Stegun (1964))
1

3!

∂3g(y, ξ)

∂φ3
(φ∗t+1 − Φ1t+1)(φ∗t+1 −Φ2t+1)(φ∗t+1 − Φ3t+1)

It remains to show

|φ∗t+1 − Φit+1| = O(
0Pt), i = 1, 2, 3 (24)

By carefully following the tree construction procedure (7)-(9) and using the Lipschitz condition

we can show

|Φit+1 − Φjt+1| = O(
0Pt), i, j = 1, 2, 3 (25)

This is also true at time t and therefore

|Φit − Φ̄t| = O(
0Pt), i = 1, 2, 3 (26)

We only care φ∗ = Φ∗t+1(Yt,Φit, t), i = 1, 2, 3. Since Φ∗t+1(Yt, Φ̄t, t) is one of Φ
j
t+1, j = 1, 2, 3,

without loss of generality, say Φ1t+1 = Φ
∗
t+1(Yt, Φ̄t, t), then by (6) and (26)

|φ∗ − Φ1t+1| = |n(Yt,Φit, t)Pt+ Φit − n(Yt, Φ̄t, t)Pt− Φ̄t|
≤ O(Pt) + |Φit − Φ̄t| = O(

0Pt)
This together with (25) gives (24), which is what we want.
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Table 1: Convergence of European and American Claims

The initial yield curve flat at 6%. γ = 0.5, σ = 0.02, κ = 0.01. The European prices obtained using simulation

are based on 100,000 paths with 500 time partitions. The standard errors of the simulated prices are reposted in

parentheses. The contract face value is $1,000. The strike price for both contracts are at-the-money.

Time 5 Year Call on 10 Year 1 Year Call on 3 Month

Partition Discount Bond (ATM) Spot Rate (ATM)

Number European American European American

10 16.4696 18.2867 1.8198 1.8546

30 16.4614 18.3971 1.8266 1.8601

50 16.4526 18.4099 1.8280 1.8612

100 16.4405 18.4104 1.8291 1.8620

200 16.4300 18.4065 1.8296 1.8624

300 16.4249 18.4037 1.8298 1.8625

400 16.4216 18.4020 1.8299 1.8626

Simulation 16.4348 - 1.8299 -

(0.0245) (0.0037)
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Table 2: Convergence of Option Prices Under Different Parameter Settings

The option contracts are six month caplets on the three month spot rate. Initial term structure is flat at 10%.

A time partition of 50 is used to generate the lattice. 20,000 paths are used for the simulated prices. Control

variates are used as variance reduction technique. The notional principal for the contract is $1,000. The volatility

parameters are σ0, κ and γ, where σ0 = σr(0)γ is the initial volatility of the spot rate. The boxed starred prices

refer to those prices where the lattice price was not in the confidence interval.
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Table 3: Convergence of Generalized GARCH Option Prices

This table shows the convergence of at-the-money European call option prices as the number of time partitions

per day, m, increases. Over each period, the price can move to one of three values. The last column shows

the 95% confidence intervals for the true option prices under the bivariate diffusion. These prices were obtained

using 50,000 paths and antithetic variables. The Black Scholes price was used as a control variate. The bivariate

simulations were implemented usingm = 30 time partitions for each day. The case parameters are β0 = 6.576e−6,
β1 = 0.90, β2 = 0.04, c = 0, S0 = 100 and φ0 = 0.0001096. The risk free rate, rf , and the market price of risk, λ,

are zero.

Maturity Trading Periods per Day (m) Diffusion

(days) 1 2 3 4 5 Limit

2∗ 0.602 0.597 0.595 0.594 0.593 0.590 0.591

5∗∗ 0.941 0.937 0.936 0.935 0.935 0.933 0.934

10 1.325 1.322 1.321 1.321 1.321 1.318 1.320

20 1.869 1.867 1.867 1.867 1.867 1.864 1.867

50 2.952 2.951 2.951 2.951 2.951 2.948 2.953

100 4.173 4.173 4.173 4.173 4.173 4.167 4.175

200 5.900 5.899 5.899 5.899 5.899 5.899 5.910

* for 2 day contract, m = 15 gives price = 0.591

** for 5 day contract, m = 10 gives price = 0.934
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Table 4: Pricing Options Under Bivariate Diffusions

This table compares the prices of European call contracts for different strikes and maturities, generated by the

algorithm, and compares them to prices of the same contracts when the underlying follows a bivariate stochastic

volatility process. The latter prices are generated using Monte Carlo simulation with 50,000 sample paths, and

using antithetic variates and the Black Scholes price as a control variable. The parameters are the same as in

Table 3. For the 2 days option, m = 20; for the 5 day and 10 day contracts, m = 10, and for all other maturities,

m = 3. The darkened values in the table identify the cases where the prices produced by the reduced lattice falls

outside the confidence interval.

maturity Strike

(days) 95 97.5 100 102.5 105

2 5.000 2.526 0.591 0.029 0.000

5.000 5.001 2.526 2.527 0.590 0.591 0.030 0.030 0.000 0.000

5 5.011 2.664 0.934 0.178 0.016

5.011 5.013 2.664 2.665 0.933 0.934 0.177 0.178 0.016 0.017

10 5.084 2.918 1.320 0.443 0.106

5.083 5.086 2.916 2.918 1.318 1.320 0.441 0.443 0.105 0.106

20 5.316 3.357 1.867 0.898 0.369

5.315 5.320 3.355 3.359 1.865 1.867 0.896 0.898 0.368 0.371

50 6.042 4.333 2.951 1.903 1.160

6.038 6.045 4.329 4.335 2.945 2.950 1.897 1.902 1.157 1.162

100 7.047 5.490 4.173 3.092 2.234

7.041 7.050 5.485 5.493 4.167 4.174 3.089 3.096 2.228 2.235

200 8.593 7.160 5.899 4.806 3.872

8.584 8.598 7.152 7.164 5.890 5.902 4.798 4.809 3.861 3.871
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