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Abstract

This article develops a family of option pricing models when the underlying stock price dynamic is

modeled by a regime switching process in which prices remain in one volatility regime for a random amount

of time before switching over into a new regime. Our family includes the regime switching models of

Hamilton (1989), in which volatility in°uences returns. In addition, our models allow for feedback e®ects

from returns to volatilities. Our family also includes GARCH option models as a special limiting case.

Our models are more general than GARCH models in that our variance updating schemes do not only

depend on levels of volatility and asset innovations, but also allow for a second factor that is orthogonal to

asset innovations. The underlying processes in our family capture the asymmetric response of volatility

to good and bad news and thus permit negative (or positive) correlation between returns and volatility.

We provide the theory for pricing options under such processes, present an analytical solution for the

special case where returns provide no feedback to volatility levels, and develop an e±cient algorithm for

the computation of American option prices for the general case.



This article develops a family of option pricing models obtained when the underlying stock dynamic

is modeled by a Markov regime switching process. In such models, the stochastic process remains in one

regime for a random amount of time before switching over into a new regime. In our case, the regimes

are characterized by di®erent volatility levels. Rather than permitting volatilities to follow a continuous

time, continuous state process, as in most stochastic volatility models, our primary focus is on cases where

volatilities can take on a ¯nite set of values, and can only switch regimes at ¯nite times. In this regard,

our models can be viewed as special cases of the large family of stochastic volatility models, in which the

number of distributions for the logarithmic return are constrained to a ¯nite collection. While this may, at

¯rst glance, appear unnecessarily restrictive, our family of models includes as special limiting cases, many

well-known models, including the family of GARCH option pricing models discussed by Duan (1995).

We also can obtain more general limiting models in which variance updating schemes depend not only

on levels of variance and on asset innovations, but also on a second factor that is uncorrelated with asset

returns. As a result variance levels are not completely determined by the path of prices. This second

factor allows for further °exibility in capturing the properties of stock return processes. Our family of

models also include the regime switching models of Hamilton (1989) as a special case. His models allow

volatility regimes to impact returns, but they do not allow returns to impact future volatilities. Our

models do permit this feedback e®ect. Thus our models allow us to capture the correlation between asset

and volatility innovations, or equivalently, the asymmetric volatility response to good and bad news in

asset returns.

Our family of models ¯lls the gap of models between the Black Scholes model, which in our framework

can be viewed as a single volatility regime model with no feedback e®ects, and the extended GARCH

models, which have in¯nitely many volatility regimes with feedback e®ects. We demonstrate that it is

possible to establish models with a relatively small number of volatility regimes that produce option

prices indistinguishable from models with a continuum of volatility states. We present an algorithm that

permits American derivatives to be priced for our most general bi-directional regime switching process.

If one is only interested in the rich family of GARCH option models, then our algorithm provides an

alternative to the numerical procedure of Ritchken and Trevor (1999) and Duan and Simonato (1999).

The addition of the second orthogonal factor causes little complication for the algorithm, and provides

meaningful extensions to processes beyond the GARCH family.

Our study is certainly not the ¯rst to consider regime switching mechanisms nor option pricing under

regime switching. The early regime switching models were primarily designed to capture changes in

the underlying economic mechanism that generated the data. Examples include Hamilton (1989) and

Gray (1996), Bekaert and Hodrick (1993) and Durland and McCurdy (1994). Recently, attention has

been placed on volatility regime switching models, solely for the purpose of better understanding option

price behavior. Bollen, Gray and Whaley (1999), for example, show that a very simple regime switching

model with independent shifts in the mean and variance dominate a range of GARCH models in the

foreign exchange market. Bollen (1998) presents a lattice based algorithm that permits American options
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to be priced for these regime switching models. The type of regime switching models that are typically

considered assume that asset innovations have no feedback e®ects on volatilities. Further, the assumption

that regime shift risk is not priced is made so as to allow option pricing to proceed in the usual risk neutral

manner. Our models weaken these restrictions.

The paper proceeds as follows. In section 1 we present the bi-directional regime switching model for

asset returns and describe some of its properties. In section 2 we investigate how options can be priced

when the underlying follows a regime switching process with feedback. In section 3 we investigate a special

case of the model where there are only two volatility regimes and asset innovations have no feedback e®ects

on volatilities. The resulting option model turns out to be a weighted sum of Black and Scholes prices. In

section 4 we investigate a second special case that leads to models which include GARCH and stochastic

volatility models as limiting cases. In section 5 we provide an e±cient numerical scheme for pricing

European and American options under our most general bi-directional regime switching process. We

illustrate how regime switching models with relatively few volatility states can serve as excellent proxies

for GARCH models. We also demonstrate how the second orthogonal factor provides signi¯cant °exibility

beyond GARCH models in the shapes that return distributions can take on over the lifetime of the option.

While there are a huge number of models in the regime switching family, the specī c models that we

evaluate have up to six unknown parameters, with the simplest model containing just four. In section 6

we investigate the performance of a few speci¯cations of our regime switching models on S&P 500 stock

index option prices. The example provides su±ciently encouraging results to warrant ongoing empirical

research in this area.

1 Regime Switching Model With Feedback E®ects

We assume that the asset price is governed by a regime switching with feedback dynamic. Let St be the

asset price at date t, and let ¾2
t+1 be the conditional variance of the logarithmic return at date t that

holds for the period [t; t+ 1]. Given ¾t+1, the dynamics of the price over the next period is assumed to

be:

ln
St+1

St
= r + ¸¾t+1 ¡

1

2
¾2
t+1 + ¾t+1"t+1 (1)

where "t+1 is a standard normal random variable and ¸ can be interpreted as the risk premium per one

standard deviation. We shall assume that there are K distinct volatility regimes, and in each period there

is a chance that the volatility will move into a new regime. The volatility follows a Markov chain, which

is fully determined by the K£K transition matrix between volatility states. The transition probabilities

are determined by a threshold model. In particular, the volatility, ¾t+1, depends on its previous value,

¾t, on the most recent return innovation, "t, and on a variable, »t, that is independent of "t. The random

process »t can be viewed as a state variable process that impacts the variance but is orthogonal to the

2



asset return innovation process, "t .

Let F ("t ; »t) be a function, that determines the impact of the most recent return innovation and

orthogonal volatility innovation, in the form of a non negative real number. The new volatility state is

completely determined by this functional value together with the existing level of volatility. Speci¯cally,

corresponding to each volatility level, ±i ; i = 1;2; ¢ ¢ ¢ ; K, is a set of values fc0(±i); c1(±i); ::::; cK(±i)g such

that c0(±i) = 0 and cK(±i) = 1. At date t, we have, for i = 1; 2; ¢ ¢ ¢ ; K:

¾t+1 = ±i if ci¡1(¾t) · F ("t ; »t) < ci(¾t) (2)

That is, conditional on the current level of volatility, the switch into a new regime, is completely deter-

mined by the magnitude of the functional value, F (¢). While the updating function, F (:) could be fairly

general, to make matters speci¯c, we will assume that it has the structure:

F ("t; »t) = q1("t ¡ !)+ + q2("t ¡ !)¡ + (1 ¡ q1 ¡ q2)j»tj (3)

where ("t ¡ !)+ ´ max("t ¡ !;0), ("t ¡ !)¡ ´ max(! ¡ "t ; 0), q1 ¸ 0, q2 ¸ 0, and q1 + q2 · 1.

This formulation essentially uses the weighted sum of the positive and negative parts of the return

innovation and the orthogonal state variable innovation in determining the next volatility state. The

return innovation is ¯rst subject to a bias adjustment, i.e., !. This bias adjustment can potentially

induce an asymmetric volatility response to a return innovation. A di®erence in q1 and q2 can also induce

an asymmetric volatility response to a return innovation. The reason for incorporating two di®erent

channels for asymmetric volatility response will become clear later when we discuss limiting properties of

the regime switching model. The ¯rst channel for asymmetry leads us to the NGARCH model of Engle

and Ng (1993) as a limit, whereas the second one yields the GJR-GARCH model of Glosten, et al. (1993)

model.

When q1 = q2 = 0, the variance updating scheme is completely determined by the state variable

innovation. In this case, variances impact returns but return innovations have no impact on variances.

In other words the interaction between returns and volatilities only occurs in one direction. This special

case re°ects the essence of the regime switching model pioneered by Hamilton (1989) for econometric

analysis. Empirical evidence exhibited by asset returns in most markets is, however, at odds with this

uni-directional feature of the model. Equity returns are, for example, known to depend on past return

innovations with volatility being persistent. Indeed, it is well documented that large absolute returns are

more likely to be followed by large absolute returns. This suggests that q1 6= 0 and q2 6= 0. In general,

the parameters q1 and q2 permit past return innovations to feedback into the volatility process.

In addition, returns in many markets are strongly asymmetric. Negative returns are followed by larger

increases in volatility than equally large positive returns. This implies that there is a negative correlation

between the asset return innovation and its volatility innovation. Following Black's (1976) exploration of

this phenomenon, it is now commonly referred to as the leverage e®ect. As stated earlier, this phenomenon
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can be captured by our models in two di®erent ways. First, the parameter ! di®erentiates the impact of

negative innovations from positive ones, and hence allows us to capture the leverage e®ect (! > 0) . If

! = 0, q2 > q1 provides an alternative way that makes the impact of a negative return innovation more

pronounced in comparison to a positive one of equal magnitude.

Our full model for the asset price dynamic is given by:

ln
St+1

St
= r + ¸¾t+1 ¡

1

2
¾2
t+1 + ¾t+1"t+1 (4)

¾t+1 = ±i if ci¡1(¾t) · q1("t ¡ !)+ + q2("t ¡ !)¡ + (1¡ q1 ¡ q2)j»t j < ci(¾t) (5)

for i = 1; 2; ¢ ¢ ¢ ; K and t 2 f0; 1; ¢ ¢ ¢ ; T ¡ 1g; 0 · q1; 0 · q2; q1 + q2 · 1; and
"
"t+1

»t+1

#
jFt

P» N (02£1; I2£2) (6)

where P stands for the data generating probability measure and Ft is the information set up to and

including time t, i.e., Ft is the ¾-algebra generated by fS0; ¾1; "s; »s : s 2 f1; 2; ¢ ¢ ¢ ; tgg. 02£1 denotes a

two-dimensional column vector of 0 and I2£2 the 2 £ 2 identity matrix.

To better understand the regime switching with feedback model, consider the case K = 2 where the

volatility follows a two-state process. For this case, we can compute the 2£ 2 transition matrix for the

volatility conditional on "t . Specī cally, we have

Pr Pf¾t+1 = ±1j¾t = ±1; "tg
= Pr Pf0 · q1("t ¡ !)+ + q2("t ¡ !)¡ + (1 ¡ q1 ¡ q2)j»tj < c1(±1)j¾t = ±1; "tg

= N

µ
c1(±1)¡ q1("t ¡ !)+ ¡ q2("t ¡ !)¡

1 ¡ q1 ¡ q2

¶
¡ N

µ
¡c1(±1) + q1("t ¡ !)+ + q2("t ¡ !)¡

1 ¡ q1 ¡ q2

¶

Pr Pf¾t+1 = ±1j¾t = ±2; "tg
= Pr Pf0 · q1("t ¡ !)+ + q2("t ¡ !)¡ + (1 ¡ q1 ¡ q2)j»tj < c1(±2)j¾t = ±2; "tg

= N

µ
c1(±2)¡ q1("t ¡ !)+ ¡ q2("t ¡ !)¡

1 ¡ q1 ¡ q2

¶
¡ N

µ
¡c1(±2) + q1("t ¡ !)+ + q2("t ¡ !)¡

1 ¡ q1 ¡ q2

¶

When q1+q2 = 1, the values are taken as the limit of (q1+q2) approaching one. The transition probability

matrix from t to t + 1, conditional on "t , can be expressed as
"

Pr P f¾t+1 = ±1j¾t = ±1; "tg; 1 ¡ Pr P f¾t+1 = ±1j¾t = ±1; "tg
Pr P f¾t+1 = ±1j¾t = ±2; "tg; 1 ¡ Pr P f¾t+1 = ±1j¾t = ±2; "tg

#

At ¯rst glance, from the perspective of examining volatility alone, the system appears overparameter-

ized because a two-state Markov transition probability matrix has only two degrees of freedom yet here

there are ¯ve parameters in the transition matrix, i.e., q1, q2, !, c1(±1) and c1(±2). However, from the

standpoint of characterizing the overall system of both returns and volatility, the model is not overpara-

meterized. In fact, for the case q1 > 0 and/or q2 > 0 we have generalized the standard two-state Markov
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variance switching system by building in a feedback (potentially asymmetrical) mechanism so that return

innovations can impact volatilities. In contrast to the standard regime switching model, the transition

probability matrix is time-varying and its entries depend on the return just realized.

2 Option Pricing Under Regime Switching With Feedback

For option pricing in this framework, Duan's (1995) local risk-neutralization principle can be extended to

incorporate the e®ects of the orthogonal volatility factor. In particular, the proposition below provides

conditions under which option contracts can be priced using an equivalent measure as if the economic

agents were neutral to risk locally.

Proposition 1 If the dynamics of the underlying asset and variance are given as in equations (4) and (5),

and if the representative agent is an expected utility maximizer (time-separable and additive preferences)

with any of the following three conditions holding:

(i) the utility function has constant relative risk aversion and changes in the logarithmic aggregate

consumption have conditional normal distributions with constant mean and variance under measure

P ;

(ii) the utility function is of constant absolute risk aversion and changes in the aggregate consumption

have conditional normal distributions with constant mean and variance under measure P ;

(iii) the utility function is linear,

then the asset price and variance dynamics under the equilibrium price measure Q become:

ln
St+1

St
= r ¡ 1

2
¾2
t+1 + ¾t+1"

¤
t+1 (7)

¾t+1 = ±i if ci¡1(¾t) · q1("
¤
t ¡ ! ¡ ¸)+ + q2("

¤
t ¡ ! ¡ ¸)¡ + (1 ¡ q1 ¡ q2)j»¤t ¡ vt j < ci(¾t) (8)

for i = 1;2; ¢ ¢ ¢ ; K and t 2 f0; 1; ¢ ¢ ¢ ;T ¡ 1g,

where
"
"¤t+1

»¤t+1

#
´
"

"t+1 + ¸

»t+1 + vt+1

#
jFt

Q» N (02£1; I2£2) for some Ft-measurable vt+1 (9)

Proof: See Appendix.
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The parameter ¸ is a unit risk premium for the asset that can be identī ed by performing a statistical

analysis of return data under measure P . This parameter can also be viewed as a result of locally

risk-neutralizing "t. The predictable stochastic process vt , on the other hand, arises from locally risk-

neutralizing »t . This conditional parameter can be interpreted as the orthogonal volatility risk premium

(being stochastic in general), because it pertains to the volatility risk arising from a source that is

entirely independent of asset returns. For the remainder of this paper, we assume that vt is a constant,

i.e., vt = v. This assumption amounts to imposing a constant correlation over time between the marginal

rate of substitution (logarithmic) and the orthogonal volatility innovation. If q1 + q2 = 1, the orthogonal

volatility risk premium becomes irrelevant, and the option pricing system is completely characterized by

the parameters identi¯able using the data generating system under measure P . As stated in Duan (1995),

the constant mean and variance assumption for the aggregate consumption in the proposition is merely

used to ensure a constant equilibrium interest rate. With the locally risk-neutralized system in place, we

can price contingent claims, European or American style, using a lattice scheme described later.

For pricing purposes, the transition matrix under Q has the same form as that under the data

generating probability measure, except all innovation terms in the volatility dynamic undergo a mean

shift due to local risk-neutralization. The option pricing system under the two-state bi-directional regime

switching model has 9 parameters: ±1, ±2, c1(±1), c1(±2), q1, q2, !, ¸ and v. For the special case of the

uni-directional model, the whole system contains 5 parameters: ±1, ±2, c1(±1), c1(±2), and v. If we use the

pricing system solely on option data without referring back to the underlying asset return, there will be

one parameter that cannot be determined by the system. Speci¯cally, the three parameters: c1(±1), c1(±2)

and v are used to determine the 2 £ 2 transition probability matrix under the risk-neutralized pricing

measure. Since the transition matrix has only two degrees of freedom, two parameters can be pinned

down when only option data are used to imply out the model parameter values. For convenience, one

may choose to set v = 0 when deal with option data only without impeding the uni-directional model's

performance. If one uses historical price data in conjunction with option data, then c1(±1) and c1(±2) will

be identi¯ed under the data generating measure and the value for parameter v can then be implied out

by option prices.

The parameter indeterminacy also occurs for the general two-state regime switching model if one is

restricted to using the option data in implying out the model parameters. First, only the sum of ! and ¸

can be determined. Second, v cannot be separated from c1(±1) and c1(±2) for the same reason as described

earlier under the uni-directional model. From an application point of view, one may conveniently set ! = 0

and v = 0 without in any way impeding the performance of the model for option pricing.

So far very little structure has been imposed on the dynamic of the variance updating mechanism. For

example, no structure has been imposed on the functions fci(¾t)ji = 1; 2; :::; n ¡1g. If we want to reduce

the number of parameters in the option pricing model, then additional structure needs to be imposed on

the model. In section 4 we will consider a model with additional structure that signi¯cantly reduces the

number of parameters.
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3 The Two-State uni-directional Regime Switching Model

When the feedback mechanism of the regime switching model is switched o®, i.e., q1 = q2 = 0, a

closed-form solution for European options can be derived. For the illustration purpose, we focus here on

the standard two-state variance switching model in the spirit of Hamilton (1989) where the asset price

dynamic under the data generating measure P is

ln
St+1

St
= r + ¸¾t+1 ¡

1

2
¾2
t+1 + ¾t+1"t+1 (10)

¾t+1 = ±i if ci¡1(¾t) · j»t j < ci(¾t) for i = 1; 2: (11)

where "
"t+1

»t+1

#
jFt P» N (02£1; I2£2) (12)

Note that in this two-state case, c0(¾t) = 0 and c2(¾t) = 1. The volatility transition probability matrix

is "
N (c1(±1)) ¡N (¡c1(±1)); 1 ¡N (c1(±1)) +N (¡c1(±1))
N (c1(±2)) ¡N (¡c1(±2)); 1 ¡N (c1(±2)) +N (¡c1(±2))

#

Local risk-neutralization leads to a di®erent dynamics under measure Q. By Proposition 1 and the

maintained assumption of constant v, we have

ln
St+1

St
= r ¡ 1

2
¾2
t+1 + ¾t+1"

¤
t+1 (13)

¾t+1 = ±i if ci¡1(¾t) · j»¤t ¡ vj < ci(¾t) for i = 1; 2: (14)

where "
"¤t+1

»¤t+1

#
jFt

Q» N (02£1; I2£2) (15)

and the transition probability matrix becomes

"
N (v+ c1(±1))¡N (v ¡ c1(±1)); 1 ¡N (v+ c1(±1)) +N (v ¡ c1(±1))

N (v+ c1(±2))¡N (v ¡ c1(±2)); 1 ¡N (v+ c1(±2)) +N (v ¡ c1(±2))

#

Since there is no feedback from returns, we are able to derive an analytical pricing formula for European

options. Let C k
0 (X; n) be the time 0 price of an European call option with strike X that matures after n

periods given that the initial volatility is ±k (for k = 1; 2).

In the Appendix we show that:

Ck0 (X; n) =

nX

j=0

°knjC
k
j0 (16)

where

Ckj0 = S0N (d1j )¡Xe¡rfnN (d2j ) (17)
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and

d1j =
ln S0=X + nr + µ2

j =2

µj
d2j = d1j ¡ µj

µ2
j = j±21 + (n ¡ j)±2

2 for j = 0; : : : ; n

In the above expression, °knj represents the probability (under measure Q) that in n periods the number

of visits (from state k) to state 1 and state 2 are j and n ¡ j , respectively. The formula for °knj is given

in the Appendix.

The form of our analytical pricing formula suggests that the option price is a weighted average

of the Black-Scholes formula values corresponding to di®erent cumulative volatilities with the weights

determined by the probabilities of di®erent cumulative volatilities. This form resembles in spirit to the

stochastic volatility option pricing result of Hull and White (1987). The driving force behind our uni-

directional regime switching model and that of Hull and White (1987) is the same, which is due to the

lack of return feedback.

For the purpose of pricing options, the uni-directional regime switching model can be reparameterized

by the two volatility levels and the two diagonal transition probabilities, say p11 and p22. Table 1

illustrates the typical sensitivity of option prices to these two transition probability variables controlling

how volatilities are clustered.

[Insert Table 1 Here]

In this example, the initial volatility is always ¯xed at the low variance state. If the transition probability

p11 = 1; the volatility remains in the low variance state and the option prices must always equal the

Black Scholes price using the low volatility. This result is re°ected in the last row of the table in which

all entries are equal and the option value is the lowest. For the case of p22 = 1, the volatility stays in the

low variance state for a random amount of time before being absorbed into a high variance state. The

smaller is the value of p11, the higher is the transition probability to the high variance state. Since the

high variance state is absorbing, a lower p11 imply a higher option value, which is exactly the case shown

in the last column of the table.

4 GARCH and Stochastic Volatility Option Pricing Models

As discussed earlier, it makes sense to consider more structured regime switching models that lead to

fewer parameters. So far we have not imposed any special form on the functions fci(¾t); i = 1; ¢ ¢ ¢ ; K¡1g:
In this section we devise a specī c regime switching model that leads to option models with between 3

8



and 8 parameters. The interesting feature of these models is that they can yield GARCH and stochastic

volatility option pricing models as special limiting cases. To accomplish this objective, we only need to

show the GARCH option pricing model as a special case of the regime switching with feedback model.

The result for the stochastic volatility option pricing model follows directly from the result established

in Duan (1996&1997) in which the GARCH option pricing model is shown to converge to the stochastic

volatility option pricing model as the time step becomes in¯nitesimal.

Assume K volatility states, denoted by a strictly increasing sequence, f±i(K ); i = 1; ¢ ¢ ¢ ; Kg satisfy

the following partition condition.

Partition Condition.

1. ±1(K) ! 0 and, ±K(K) ! 1 as K ! 1, and

2. supi2f1;2;¢ ¢¢K¡1g[±
2
i+1(K)¡ ±2

i (K)] ! 0 as K ! 1 .

The ¯rst partition condition requires the minimum (maximum) volatility to approach zero (in¯nity) when

the number of volatility states goes to in¯nity. The second partition condition, on the other hand, ensures

that two adjacent volatilities become arbitrarily close uniformly when the number of volatilities goes to

in¯nity. In other words, the partition condition ensures that the rate of getting closer for any two adjacent

volatilities is faster than the rate for the maximum volatility to go to in¯nity. We will provide later in

this section a speci¯c construction that satis¯es the partition condition.

The bi-directional regime switching model converges to a limiting model that contains some standard

GARCH(1,1) models as special cases.

Proposition 2 Consider the bi-directional regime switching model based on K volatility states:

ln
S

(K )
t+1

S
(K )
t

= r + ¸¾(K)
t+1 ¡

1

2
¾(K )2
t+1 + ¾(K)

t+1 "t+1 (18)

¾
(K)
t+1 = ±i(K) if ci¡1(¾

(K)
t ) · q1("t ¡ !)+ + q2("t ¡ !)¡ + (1¡ q1¡ q2)j»t j < ci(¾

(K)
t ) (19)

for i = 1; 2; ¢ ¢ ¢ ; K and t 2 f0; 1; ¢ ¢ ¢ ; T ¡ 1g; 0 · q1; 0 · q2; q1 + q2 · 1; and

"
"t+1

»t+1

#
jFt

P» N (02£1; I2£2) (20)

The threshold values are set up as:

ci(¾
(K )
t ) =

s
max(

1
2 [±2

i (K) + ±2
i+1(K )]¡ ¯0

¯2¾
(K)2
t

¡ ¯1

¯2
; 0) for i = 1; ¢ ¢ ¢ ; K ¡ 1 (21)
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with c0(¾
(K )
t ) = 0 and cK(¾

(K)
t ) = 1. If the volatility states satisfy the partition condition, S

(K )
0 = S0

and ¾
(K )
1 = ¾1, then, as K ! 1, the bi-directional regime switching model converges almost surely in P

over [0; T ] to the following system:

ln
St+1

St
= r + ¸¾t+1 ¡

1

2
¾2
t+1 + ¾t+1"t+1 (22)

¾2
t+1 = ¯0 + ¯1¾

2
t + ¯2¾

2
t [q1("t ¡ !)+ + q2("t ¡ !)¡ + (1¡ q1 ¡ q2)j»t j]2: (23)

Proof: See Appendix

If we set q1 + q2 = 1, i.e., the e®ect due to the orthogonal volatility innovation is removed, the limiting

volatility dynamic is simpli¯ed to

¾2
t+1 = ¯0 + ¯1¾

2
t + ¯2¾

2
t [q1("t ¡ !)+ + q2("t ¡ !)¡]2

= ¯0 + ¯1¾
2
t + ¯2q

2
1¾

2
t

£
("t ¡ !)+

¤2
+ ¯2q

2
2¾

2
t

£
("t ¡ !)¡

¤2
(because ("t ¡ !)+("t ¡ !)¡ = 0)

= ¯0 + ¯1¾
2
t + ¯2q

2
1¾

2
t

£
("t ¡ !) + ("t ¡ !)¡

¤2
+ ¯2q

2
2¾

2
t

£
("t ¡ !)¡

¤2

= ¯0 + ¯1¾
2
t + ¯2q

2
1¾

2
t

n
("t ¡ !)2 ¡

£
("t ¡ !)¡

¤2o
+ ¯2q

2
2¾

2
t

£
("t ¡ !)¡

¤2

= ¯0 + ¯1¾
2
t + ¯2q

2
1¾

2
t ("t ¡ !)2 + ¯2(q

2
2 ¡ q2

1 )¾2
t

£
("t ¡ !)¡

¤2
: (24)

The limiting model becomes the NGARCH(1,1) model of Engle and Ng (1993) if q1 = q2. If ! = 0, the

limiting model reduces to the GJR-GARCH(1,1) specī cation of Glosten, et al. (1993).

By the same argument, the volatility dynamic under the equilibrium price measure Q has the following

limit:

¾2
t+1 = ¯0 + ¯1¾

2
t + ¯2¾

2
t [q1("

¤
t ¡ !¡ ¸)+ + q2("

¤
t ¡ ! ¡ ¸)¡ + (1 ¡ q1 ¡ q2)j»¤t ¡ vj]2: (25)

Again, if q1 + q2 = 1, we have

¾2
t+1 = ¯0 + ¯1¾

2
t + ¯2q

2
1¾

2
t ("

¤
t ¡ ! ¡ ¸)2 + ¯2(q

2
2 ¡ q21)¾

2
t

£
("¤t ¡ !¡ ¸)¡

¤2
; (26)

which yields Duan's (1995) GARCH option pricing model for the NGARCH or GJR-GARCH speci¯cation

depending on how the parameters are specialized.

To gain a better understanding of the properties of this limiting model and its implications for option

pricing, we plot the risk-neutral density function under various parameter scenarios. Di®erent combi-

nations of parameter values will inevitably a®ect the level of volatility and make the comparison less

meaningful. It is therefore preferable to control the level of volatility and focus on the impact of a para-

meter change on skewness and kurtosis of the risk-neutral density. In order to do so, we need to derive

an explicit expression for the stationary volatility based on the system in equation (25). The following

proposition provides such a result.
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Proposition 3 If the conditional volatility under measure Q has the following dynamic:

¾2
t+1 = ¯0 + ¯1¾

2
t + ¯2¾

2
t [q1("

¤
t ¡ !¡ ¸)+ + q2("

¤
t ¡ ! ¡ ¸)¡ + (1 ¡ q1 ¡ q2)j»¤t ¡ vj]2; (27)

and ½ < 1, then for t ¸ 1,

EQ
¡
¾2
t jF0

¢
= ¾2

1½
t¡1 +

¯0(1 ¡ ½t¡1)

1¡ ½
(28)

and

EQ
¡
¾2
t

¢
=

¯0

1¡ ½ ; (29)

where

½ = ¯1 + ¯2

8
>>>><
>>>>:

q2
1E

Q
³
[("¤t ¡ ! ¡ ¸)+ ]

2 jFt¡1

´
+ q2

2E
Q
³
[("¤t ¡ !¡ ¸)¡]

2 jFt¡1

´
+

(1 ¡ q1 ¡ q2)2EQ
¡
j»¤t ¡ vj2jFt¡1

¢
+

2q1(1 ¡ q1 ¡ q2)EQ (("¤t ¡ ! ¡ ¸)+ jFt¡1) E
Q (j»¤t ¡ vjjFt¡1) +

2q2(1¡ q1 ¡ q2)E
Q (("¤t ¡ ! ¡ ¸)¡jFt¡1)E

Q (j»¤t ¡ vjjFt¡1)

9
>>>>=
>>>>;

EQ
³£

("¤t ¡ ! ¡ ¸)+
¤2 jFt¡1

´
=

£
1 + (!+ ¸)2

¤
[1¡ N (! + ¸)] ¡ (! + ¸)N 0(! + ¸)

EQ
³£

("¤t ¡ ! ¡ ¸)¡
¤2 jFt¡1

´
=

£
1 + (!+ ¸)2

¤
N (! + ¸) + (!+ ¸)N 0(!+ ¸)

EQ
¡
j»¤t ¡ vj2jFt¡1

¢
= 1 + v2

EQ
¡
("¤t ¡ !¡ ¸)+jFt¡1

¢
= N 0(! + ¸)¡ (! + ¸) [1 ¡N (! + ¸)]

EQ
¡
("¤t ¡ !¡ ¸)¡jFt¡1

¢
= N 0(! + ¸) + (! + ¸)N (! + ¸)

EQ (j»¤t ¡ vjjFt¡1) = 2N 0(v) + 2vN (v)¡ v

Remark: N (¢) and N 0(¢) are the standard normal distribution and density functions, respectively. ¾1 is

measurable with respect to F0.

Proof: See Appendix

It is evident from the above proposition, if ¯0 and ½ are ¯xed, then the stationary volatility of the

system under measure Q in equation (29) is ¯xed. Suppose that the values for q1 and q2 are changed. One

can always make a compensatory adjustment to ¯2 so that ½ remains unchanged. Similarly, if the value

of !+¸ is changed, ¯2 can be adjusted to maintain the level of ½. Making this type of change allows us to

examine the e®ect of the orthogonal volatility innovation (»¤t ) and the asset risk premium (¸) on the risk-

neutral density without altering the magnitude of the volatility. Figure 1 illustrates several risk-neutral

density functions obtained for the stock price over a three-month horizon. The parameters that are ¯xed

in this analysis are ¯0 = 0:00001;¯1 = 0:8; ! = 0 and v = 0. Five di®erent scenarios are considered: (1)

q1 = q2 = 1
2
; ¸ = 0, (2) q1 = q2 = 1

2
; ¸ = 1, (3) q1 = 1

3
; q2 = 2

3
; ¸ = 0, (4) q1 = 0;q2 = 0; ¸ = 0, and (5)

q1 = 2
3
; q2 = 1

3
; ¸ = 0. In all ¯ve cases, the stationary risk-neutral standard deviation (annualized) equals

20% because ½ is maintained at 0:90875.
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[Insert Figure 1 Here]

The ¯gure illustrates that the regime switching model is capable of generating return distributions that

are skewed and have fat tails relative to the normal.

Proposition 2 allows a great deal of freedom in choosing f±i(K); i = 1; ¢ ¢ ¢ ; Kg. In the actual con-

struction of a regime switching model, one hopes to rapidly approach the limiting GARCH model under

either measure P or Q by employing some natural designs. Intuitively, an e±cient design will have the

conditional volatility centered around the stationary volatility of the target system. Indeed, our design

relies on the stationary volatility. For option pricing, we are mainly interested in the system under mea-

sure Q, and therefore the stationary volatility of interest is the one corresponding to measure Q. We

propose the following simple discretization scheme: for any time horizon T <1, and K > 1;

±2
i (K) = L(K) + (i¡ 1)

U (K)¡ L(K)

K ¡ 1
(30)

where

L(K) = max(cQ;T ¡ bQ;T
p
K ¡ 1; 0)

U (K) = cQ;T + bQ;T
p
K ¡ 1

cQ;T = EQ(¾2
T jF0)

bQ;T =
cQ;T
l

, and l is some positive integer.

Note that the formula for EQ(¾2
T jF0) has been derived in Proposition 3. The choice of l depends on

how many volatility states and the maximum volatility are intended in the approximation. For example,

K = 101 and l = 5 give rise to U (101) = 3cQ;T and L(101) = 0. That is, the conditional volatility

is allowed to move between zero and three times of its stationary level. If a bigger volatility range is

desired, l can be decreased without changing K. For example, l = 4 gives rise to U(101) = 3:5cQ;T and

L(101) = 0. It is straightforward to verify that the partition condition is satis¯ed regardless of the choice

of l . In short, we have a speci¯c bi-directional regime switching model design that approximates the

limiting process under measure Q over the time horizon [0; T ].

5 Pricing American Options in the bi-directional Model

We now develop lattice based models for pricing American contracts under the bi-directional regime

switching model. Consider an option that expires after n periods. We shall assume that there are K

regimes corresponding to K distinct variances. Without loss of generality we order the K volatilities with

±1 < ±2 < :::: < ±K . The threshold values, fc0(±i); c1(±i); ¢ ¢ ¢ ; cK(±i)g for each volatility level are assumed

to be given.

12



Viewed from date t, and conditional on the volatility over the next time increment being ±k, the

logarithmic return at date t + 1 is normal under measure Q with mean, (r ¡ ±2k=2) and variance ±2
k . Let

(yt; ¾t+1) represent the logarithm of the stock price at date t and the volatility for the period [t; t + 1]

respectively.

We now establish a discrete Markov chain approximation for the dynamics of f(yt ;¾t+1) j t =

0; 1; 2; ¢ ¢ ¢ ; ng that converges to the bi-directional regime switching model. We begin by ¯xing the topol-

ogy of points for the logarithm of the stock price over time. Let y
a(m)
t+1 be a discrete random variable

approximating yt+1, for t = 0; 1; 2; ¢ ¢ ¢ ; n ¡ 1 with y
a(m)
0 = y0 = ln S0. The approximating process cap-

tures the conditional transitions by a variable that can take on one of 2m + 1 points, with m{up jumps,

m{down jumps and a horizontal move. In particular, given (y
a(m)
t ; ¾t+1 = ±k ), the conditional normal

distribution is approximated by the random variable, that takes on the following values:

(ya(m)
t+1 j ¾t+1 = ±k) = ya(m)

t + j (´k°)

where j = 0;§1;§2; :::;§m, and ´k is the smallest positive integer that ensures that the conditional

¯rst two moments of the approximating distribution match the moments of the true distribution. The

conditional probability distribution for (y
a(m)
t+1 j¾t+1 = ±k) is de¯ned by:

Prfya(m)
t+1 = y

a(m)
t + j(´k°) j ±kg = P (j; k) j = 0;§1;§2; :::;§m

where

P (j; k) =
X

k1;k2;k3

Ã
n

k1 k2 k3

!
pk1u pk2

m pk3

d

with j = k1 ¡ k3, k1 + k2 + k3 = m, and k1; k2; k3 ¸ 0. Further

pu =
±2k

2´2
k°

2
+

(r ¡ ±2k=2)
p

¢t=m)

2´k°

pm = 1¡ ±2
k

´2
k°

2

pd =
±2k

2´2
k°

2
¡ (r ¡ ±2k=2)

p
¢t=m

2´k°

It is straightforward to verify that this approximation ensures that the approximating conditional dis-

tribution of the discrete random variable (y
a(m)
t+1 j ¾t+1 = ±k ) has mean r ¡ ±2k=2 and variance ±2k, and

that the discrete random variable (y
a(m)
t+1 j ¾t = ±k), converges in distribution to a normal distribution as

m! 1.

To make matters speci¯c, let (i; j) represent time period i where the stock price is at \level j", with

node (0; 0) representing date 0 when the logarithm of the stock price is y0, and the levels of logarithmic

prices in future periods are separated by ° . The lowest level that the approximating logarithmic stock

price can take in period i is ymin(i) and the maximum is ymax(i) where

y
a(m)
min (i) = ya(m)(0; 0) ¡ im°´k
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ya(m)
max (i) = ya(m)(0; 0) + im°´k

and

ya(m)(i; j) = y0 + j° for j = 0 § 1§ 2§ im´k

Of course, knowledge of node (i; j) is not su±cient to uniquely characterize the option price. At each

node, we shall carry a vector of K prices. The k th entry of this vector at this node represents the price

of an option given that the stock enters this time period with the state variables set at (ya(m)(i; j); ±k ).

Let Ca(m)(i; j;k) represent the option price at node (i; j ) when the variance for the next period is ±k.

Option prices can now readily be computed using standard backward recursion procedures. The exact

procedure used is a modī cation of the methods used by Ritchken and Trevor (1999) who price options

under GARCH processes. Unlike their model, our model does not require a forward scan to identify the

extreme volatility levels at each stock price node in the lattice. We begin in the last period, n, and note

that the payout of the claim is fully determined by the stock price alone. Hence, each K-vector, at each

terminal node, will consist of K equal entries. We now can apply backward recursion to establish the

option price at date 0. In general, consider a node in period i, ( 0 · i < n) say at node (i; j), and assume

Ca(m)(i; j; k) is to be computed. Given the volatility for the time increment [i; i+1] is ±k, we ¯rst de¯ne

the normalized innovations as

"(`; k) =
`°´k ¡ (r ¡ ±2k=2)¢t

±k
p

¢t

As m! 1, the normalized residual converges to a drawing from a standard normal distribution.

Given node (i; j), the volatility level, k, and the innovation term, `, the jump magnitude is `°´k,

and the new node is (i + 1; j + `´k). The stock price is determined, but the volatility regime is still not

identi¯ed, unless q1 + q2 = 1:

The conditional probability distribution for the new regime is partially in°uenced by the asset inno-

vation, "(`; k) and the orthogonal innovation, ». Let ¼k;p(`) represent the probability of switching to level

p from level k as a function of the asset jump innovation, determined by `, where ` = ¡m; ::::; m.

If the volatility switches to regime p, then the exact option price at the successor node can be recovered.

The expected call price at time i + 1 viewed from node (i; j) when the volatility is ±k is:

EQfCa(m)
i+1 j ya(m)(i;j ); ±kg =

KX

p=1

mX

`=¡m
Ca(m)(i+ 1; j + ´k`; p)P (`; k)¼k;p(`)

Finally, the option value in regime k, at this node is computed as:

Ca(m)(i; j; k) = e¡rf¢tEQfC a(m)
i+1 j ya(m)(i; j); ±kg

The above value is the unexercised value of the claim at the node. For an American call option, this

value has to be compared to the intrinsic value which is given by:

C
a(m)
stop (i; j;k) = Max(ey

a(m)(i;j) ¡X; 0)
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The ¯nal option price, conditional on the volatility being ±k , obtained using backward recursion, is given

by C a(m)(0; 0; k).

Table 2 demonstrates the typical convergence rate of the algorithm for the case where analytical

solutions are available. Speci¯cally, the table shows the convergence rate of the algorithm when the

uni-directional model is used. As m increases, the discrete approximation to the normal distribution over

each trading period improves. As can be seen, the algorithm produces good prices for small values of m.

For this case, and for the bi-directional case, m = 5 appears more than satisfactory.

[Insert Table 2 Here]

Table 3 shows the rate of convergence of the regime switching model prices to NGARCH option prices.

The contract priced is a 50 day European call option with the stock price at 100. All prices are computed

using the lattice approximation described in Section 5. The parameters used are ¯0 = 0:000006575; ¯1 =

0:9; ! = 0:0. The initial and stationary volatility are at 20%. Di®erent regime levels are chosen according

to (30). Particularly, we used l = 10, which results in volatility levels between 0:1% and 40% for the 100

regime model and between 0% and 90% for the 1000 regime model. The reported prices correspond to

a volatility level arti¯cially ¯xed at 20%. The last two rows show the 95% con¯dence intervals for the

limiting NGARCH option prices. Note that the prices start to converge around 400 regimes.

[Insert Table 3 Here]

When 400 regimes are used, the regime switching model produces option prices that are consistently

in the GARCH con¯dence intervals. Since the algorithm we use requires substantially less computations

than that of Ritchken and Trevor (1999) and is much simpler, it o®ers a good alternative for pricing

American options under GARCH.

6 Empirical Analysis of the Regime Switching Models

In this section we investigate the pricing of the S&P 500 stock index options (European calls) and identify

the bene¯ts, if any, in advancing beyond the Black-Scholes model to the uni-directional and bi-directional

regime switching models. We address the in-sample biases that result from using these models, and the

out-of-sample performance when these models are used to predict prices in the future.

The S&P500 index options are European call options that exist with maturities in the next two

calendar months, and also for the time periods corresponding to the expiration dates of the futures.

Our price data on the options covering the ¯ve year period from January 1991 to December 1995 was

obtained from the Berkeley Option Database. We collected data on Wednesdays and excluded contracts

15



with maturities fewer than six days. We only used options with bid/ask price quotes during the last half

hour of trading. For these contracts we also captured the reported concurrent stock index level associated

with each option trade.

In order to price the options we need to adjust the index level according to the dividends paid out

over the time to expiration. We follow Harvey and Whaley (1992), Jackwerth and Rubinstein (1996)

and Bakshi, Cao and Chen (1997), and use the actual cash dividend payments made during the life of

the option to proxy for the expected dividend payments. The present value of all the dividends is then

subtracted from the reported index levels to obtain the contemporaneous adjusted index levels. This

procedure assumes that the reported index level is not stale and re°ects the actual price of the basket of

stocks representing the index. Since intraday data and not the end of the day option prices are used, the

problem with the index level being stale is not severe.1 Since we used the actual contemporaneous index

level associated with each option trade that was reported in the data base, the actual adjusted index level

would vary slightly among the individual contracts depending on their time of trade. We normalize all

option and strike prices so that the adjusted index price is exactly $1. Finally, we used the T-Bill term

structure to extract the appropriate discount rates.

We are interested in evaluating the relative performance of four models. The ¯rst model, BS, is

the standard Black Scholes model; the second model, Ad-Hoc, is the ad hoc procedure used by Dumas,

Fleming and Whaley (1998), that merely smooths Black Scholes implied volatilities across strike prices and

expiry dates. Dumas, Fleming and Whaley found that this model performed as well as more sophisticated

models where volatility was allowed to be a deterministic function of asset price and time. This model

provides a useful practical benchmark for evaluating model performance of European contracts.

The ad-hoc BS model works as follows. Given a collection of n option prices observed at a date,

compute their implied Black-Scholes volatilities. Then, run a linear regression model, that is quadratic

in maturity and strike. Speci¯cally, we have:

IVi = ¯0 + ¯1Ti + ¯2T
2
i + ¯3Xi + ¯4X

2
i + ¯5XiTi + ²i

where IVi is the implied volatility of the ith contract that has strike price Xi (divided by index value) and

maturity Ti, i = 1; 2:::n; and ²i represents the random error term, with mean 0 and constant variance.

The regression model is then used to estimate the implied volatility for each contract. The resulting n

implied volatilities are used in the Black Scholes equation to generate theoretical prices, referred to as

Ad-Hoc prices.

1There are other methods for establishing the adjusted index level. The ¯rst is to compute the mid points of call and

put options with the same strikes and then to use put-call parity to imply out the value of the underlying index. Of course,

this method has its own problems, since with non negligible bid ask spreads, put call parity only holds as an inequality. An

alternative approach is to use the stock index futures price to back out the implied dividend adjusted index level. This leads

to one stock index adjusted value that is used for all option contracts. For a discussion of these approaches see Jackwerth

and Rubinstein (1996).
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We also included two speci¯c regime switching models; a bi-directional regime switching model, BRS,

obtained using the locally risk-neutralized version of equations (22) and (23); that is, equations (7) and

(25). For the bi-directional model, we speci¯cally set q1 = q2 = q. For its uni-directional special case, we

impose q1 = q2 = 0, which has volatility feedback switched o®.

We use all our option contracts at each date, to imply out the parameters of the ¯ve models. The

theoretical prices for the regime switching models are actually based on a continuum of regimes, and

were computed using large sample Monte Carlo simulations with control variates. Speci¯cally, the prices

were obtained using equations (7) and (25). The empirical martingale simulation method of Duan and

Simonato (1998) was implemented, and 25,000 sample paths were used for each contract. Common

random numbers were used in each pricing calculation. The criteria adopted was to minimize the sum

of squared errors between the actual and theoretical prices. This criterion has been employed in several

studies.2 For the BS model, there is only one unknown volatility parameter, so one would expect this

model to produce the worst in-sample performance. In contrast, the ad hoc procedure incorporates

signi¯cant information on all prices, and one would expect its in-sample performance to be far superior.

The bi-directional regime switching model has six unknowns ( ¯0, ¯1, ¯2 !, q and the initial volatility,

¾1), whereas the uni-directional model only has four unknowns ( ¯0, ¯1, ¯2 and the initial volatility ¾1).

We perform this ¯tting operation every 5 weeks over the time period from 1991 to 1995, yielding 52

data sets. After ¯tting the parameters, we also investigate the one week, two week, and four week out of

sample performance.

Table 4 shows the number of contracts analyzed in each moneyness and maturity category in the

in-sample ¯tting periods and in the out-of-sample periods.

[Insert Table 4 Here]

As expected, the models with the most parameters perform the best in ¯tting data in-sample. In

particular, the Black Scholes and uni-directional models produced larger errors on average than the Ad-

Hoc and bi-directional models. For each of the four models, Table 5 shows a box and whiskers plot of

the in-sample pricing residuals categorized by moneyness and maturity.

[Insert Table 5 Here]

The ¯rst column of the table clearly reveals the volatility smile e®ect associated with the Black-Scholes

model. With just one free parameter, the BS model is not capable of ¯tting prices of options. With four

free parameters, the uni-directional model does not remove much of the bias and signī cant patterns in

the residuals exist over strike prices, for all maturity buckets. The Ad-Hoc model, with its 6 parameters,

2See for example, Bakshi, Cao and Chen (1997) and Dumas, Fleming and Whaley (1998).
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seems to remove most of this bias, especially for the mid-term contracts. The box and whiskers plots

also reveal that the bi-directional model, like the Ad-Hoc model, removes much of the strike price biases.

The results indicate that the incorporation of feedback e®ects can result in a substantial improvement in

the ¯tting of a regime switching model.

Our results here echo the conclusions of Dumas, Fleming and Whaley (1998), namely that in-sample

¯ts typically improve as the number of free parameters increase. The test of any model, in terms of

pricing capability, is better revealed in out-of-sample comparisons, however.

Towards this goal we look at the relative performance for the four models one week out-of-sample.

For the Black Scholes model, conditional on the dividend adjusted S&P 500 one week later, we reestimate

the single volatility, that minimizes the sum of squared errors, and use that value to reprice all option

contracts and to establish pricing residuals.3

For the uni-directional and bi-directional models we use the parameters estimated in the previous

week for ¯0, ¯1 and ¯2 ( and q and !). To estimate the theoretical option prices, the values of both

state variables, namely the adjusted index level, and the local volatility, are required. The adjusted

index value is of course known, and the local volatility is implied out from the data. To make a fair

comparison with the Ad-Hoc model, we keep all the regression coe±cients ¯xed except for the intercept

which is reestimated from the data. In this way, in the out-of-sample periods, all models have one degree

of freedom.

The box and whiskers plots for the out-of-sample ¯ts one week after the in-sample ¯tting has taken

place are summarized in Table 6a.

[Insert Table 6a Here]

The plots of the pricing residuals reveal that the properties in the in sample ¯tting period continue

to hold in the out-of-sample periods. The uni-directional model prices, like the Black and Scholes prices,

are not capable of explaining market prices. The Ad-Hoc model produces pricing residuals with patterns

similar to the in-sample ¯tting period. In particular, there are few biases, and the mid term contracts

have low standard errors relative to the unadjusted Black Scholes model. This indicates that a quadratic

function of strike and maturity is somewhat e®ective in removing biases one week out of sample. The bi-

directional model continues to perform well relative to the uni-directional model. The box and whiskers

plots indicate that the bi-directional model is about the same as the Ad-Hoc model.

Table 6b repeats the above analysis two weeks after the in sample ¯tting was done. As the time

horizon increases, the standard error of the pricing residuals for each maturity and strike category expand.

3In other words, for the BS model there is no out-of-sample tests. We perform this so that each of our models in the

out-of-sample periods has one degree of freedom.
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However, the overall patterns in the residuals remain.4

[Insert Table 6b Here]

The above results provide graphical evidence that incorporating feedback e®ects in a regime switching

model leads to a substantial removal of biases that exist when using a uni-directional model. Further, the

results indicate that, for European options, the Ad-Hoc model provides a substantial improvement over

the unadjusted Black Scholes model. While the Ad-Hoc procedure might be competitive with the bi-

directional model, the former model is very restrictive in that it can only be applied to European options.

The big advantage of the bi-directional model is its reliance on a parametric structure to describe the

evolution of asset prices. Calibrating against the data set is thus not a pure curve ¯tting exercise. Once

the parameters are estimated, the model can be used to price American claims and other exotic options.

Since our main objective is to measure the bene¯ts of the feedback e®ects, we computed the root mean

square errors of the one week out-of-sample pricing residuals (by moneyness and maturity) for the two

regime switching models. In 14 out of the 15 cases, the standard errors are smaller for the bi-directional

model. Table 7 provides a summary statistic for comparing the two regime switching models in the

out-of-sample period. Specī cally, for each maturity-moneyness bucket, the square root of the ratio of

the out-of-sample sum of squared errors for the bi-directional model relative to the uni-directional model

was computed. The logarithm of this statistic serves as a measure of relative performance for the models.

A negative statistic indicates that the bi-directional model is better in average than the uni-directional

model. The table illustrates that in 14 out of the 15 categories the bi-directional model performed better

than the uni-directional model. Only for long term in the money options, did the uni-directional model

perform better, and in this case the improvement was very marginal.

[Insert Table 7 Here]

Table 8 shows the mean value of each of the in-sample parameter estimates, together with their

standard deviations for all the models over the 52 data sets.

[Insert Table 8 Here]

As can be seen some of the estimates °uctuate quite a bit. This either re°ects the fact that the

objective function is fairly °at over a wide region or it may indicate that the model is not well specī ed.

For the bi-directional model in all 52 optimizations the parameter that controls the feedback e®ect, namely

q was found to be signi¯cant. Its mean value was 0:40; Our analysis suggests that the bi-directional model

adds signi¯cantly to the uni-directional model.

4The same patterns continue to hold four weeks later. These results are available from the authors.
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In summary, our empirical study has con¯rmed the importance of modeling the feedback e®ect. A

bi-directional model is an improvement over a uni-directional model. Further, the bi-directional model is

capable of explaining most of the volatility smile. While the Ad-Hoc model also can explain a signi¯cant

fraction of the Black-Scholes bias, it is di±cult to adapt that model in pricing American claims or any

exotic instrument.

7 Conclusion

This article has developed a family of option pricing models that permit volatilities to follow a regime

switching process. If the transition matrix that characterizes the regime switching process is independent

of the return innovations, then the model reduces to the uni-directional regime switching model pioneered

by Hamilton (1989). We can, however, obtain a richer structure of models by permitting the transition

probabilities to be in°uenced by the return innovations. This leads to the bi-directional model for asset

returns. In this paper, we considered a family of such models and identī ed an equilibrium pricing

measure which permits option prices to be determined. A pricing algorithm was presented that permits

American options to be priced. For the special case of a uni-directional process, a simple analytical

solution exists for the pricing of European call options.

Option prices can be generated under a very rich family of bi-directional regime switching processes.

Unfortunately, this comes at a high cost of requiring many parameters to estimate. Fortunately, it is

possible to parameterize the regime switching mechanism in such a way so as to ensure that GARCH

option models, as developed by Duan (1995), appear as special limiting solutions. Actually, we showed

how generalized GARCH option pricing models could be established. These models are based on GARCH

processes with the additional feature that volatility updates are also in°uenced by a second factor that is

orthogonal to the return innovation. The number of parameters for these models do not depend on the

number of regimes. For option pricing purposes, the number of unknown parameters range from 3 to 7.

Reducing the number of regimes to a small collection is advantageous since computations grow more

than linearly with the number of regimes. Numerical simulations reveal that a relatively small number of

regimes might su±ce to capture the complex dynamics of volatilities. Moreover, the extended GARCH

models allows the modeler to produce a very rich array of return distributions beyond GARCH models.

We have provided empirical evidence that suggests that bi-directional regime switching models provide

signi¯cant improvements beyond the Black Scholes and the uni-directional models that do not permit

feedback e®ects. We have also seen that the bi-directional model performs comparably to the Ad-Hoc

model. While the Ad-Hoc model is capable of removing much of the bias, the use of this heuristic method

is at best limited to European contracts. Our models permit American options and exotics to be priced.

It remains for future empirical studies to evaluate the contribution of models within our family of
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bi-directional regime switching models. At worst, the algorithms here can be used to implement GARCH

option pricing, for which there appears to be considerable empirical support. At best, perhaps there

are some bi-directional regime switching models with 0 < q < 1 that only require a few regimes, that

outperform GARCH models, are computationally more e±cient, and contain no additional parameters.

Identifying these models and closely investigating pricing and hedging e®ectiveness issues, along the lines

of Bakshi, Cao and Chen (1997) is worthwhile. Indeed, an attractive feature of the models presented is

that since the dynamics under the data generating measure are prescribed, the consequences of discrete

time hedging can be assessed. Finally, it remains for future studies to combine cross sectional information

from option prices with the time series behavior of asset prices in a study that leads to the extraction

of all the parameters that describe the pricing dynamics. Such a study should lead to a more thorough

reconciliation of the time series estimates of volatility formation versus the implied estimates of volatility

that are extracted from option prices alone.
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Appendix

Proof of Proposition 1

By Theorem 1 of Duan (1995), the local risk-neutral valuation relationship holds under any of the

three conditions given in the statement of the theorem. This means that (1) ln
St+1

St
is, conditional on Ft ,

a Q-normal random variable, (2) V arQ( ln St+1

St
jFt) = V arP ( ln St+1

St
jFt), and (3) EQ( ln St+1

St
jFt) = er .

These three properties together imply that ln St+1

St
= r¡ 1

2
¾ 2
t +¾t"¤t+1, which is equation (7). It remains to

show that the conditional variance dynamics can be written as in equation (8) and EQ("¤t+1»
¤
t+1jFt) = 0.

By the proof of Theorem 1 of Duan (1995; p. 27), the logarithmic marginal rate of substitution,

denoted by mt+1, for the period from t to t + 1, is normally distributed with a constant mean and

variance. This result can be used to compute the following quantity:

EQ(ec»t+1 jFt) = erEP (ec»t+1+mt+1jFt)
= e®t+1EP (e(c¡vt+1)»t+1+Ut+1 jFt)

= exp

µ
®t+1 +

1

2
EP (U2

t+1jFt)
¶
EP(e(c¡vt+1)»t+1 jFt)

= exp

µ
®t+1 +

1

2
EP (U2

t+1jFt) +
c2

2
+
v2
t+1

2
¡ cvt+1

¶

The ¯rst equality is due to the de¯nition of marginal rate of substitution.. The second equality results

from linearly projecting mt+1 onto »t+1. Note that ®t+1 and vt+1are Ft-measurable projection coe±cients.

The third equality is due to the independence of »t+1 and Ut+1 and the moment generating function for

normal random variables. The last equality is again due to the moment generating function for normal

random variables. Let c = 0 and take advantage of the fact that EQ(1jFt) = 1 to obtain

EQ(ec»t+1jFt) = exp(
c2

2
¡ cvt+1)

Thus, »t+1 is distributed normally, conditional on Ft and with respect to measure Q, with mean ¡vt+1

and variance 1. De¯ne »¤t+1 ´ »t+1 + vt+1. The conditional volatility dynamic in equation (8) is thus

established.

To prove EQ("¤t+1»
¤
t+1jFt) = 0, consider

EQ(ec("t+1+»t+1)jFt) = erEP (ec("t+1+»t+1 )+mt+1 jFt)
= eat+1EP (e(c¡bt+1)("t+1+»t+1)+Ut+1 jFt)

= exp

µ
at+1 +

1

2
EP (U 2

t+1jFt)
¶
EP (e(c¡bt+1)("t+1+»t+1)jFt)

= exp

µ
at+1 +

1

2
EP (U 2

t+1jFt) + c2 + b2t+1 ¡ 2cbt+1

¶
:

The above derivation is similar to the one used earlier to prove equation (8). Again, at+1 and bt+1are

Ft-measurable projection coe±cients. The only di®erence is that ("t+1 + »t+1) has a variance equal to 2
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(with respect to measure P ). Again, let c = 0 and recognize that EQ(1jFt) = 1 to yield

EQ(ec("t+1+»t+1)jFt) = exp(c2 ¡ 2cbt+1)

Thus, ("t+1 + »t+1) is a normal random variable with a variance equal to 2 under measure Q, which

implies that ("¤t+1 + »¤t+1) also has a variance of 2 under measure Q. Since "¤t+1 and »¤t+1 are standard

normal random variables individually, it must be that "¤t+1 and »¤t+1 are Q -independent. The proof is

thus complete.

Derivation of the Two-State uni-directional Regime Switching Option Model

The total logarithmic asset return over the n periods, conditional on the state at time 0, is a mixture

of (n + 1) normal variables determined by the number of times the volatility visits a state, say state 1.

The reason that the distribution is a mixture of normals is because of the uni-directional model does not

permit feedbacks. Use Áj (y; ´j ; µ2j ) to denote the normal density function with mean ´j and variance µ2j .

Let Nk
n represents the number of visits to state 1 in n trials, given that at time 0, the state is k. Let

the density function (under measure Q) of the total logarithmic return after n periods (starting from the

volatility state k) be denoted by fn(yj¾0 = ±k ). It can be written as

fn (yj¾0 = ±k) =

nX

j=0

°knjÁj (y; ´j; µ
2
j ) for k = 1; 2

where

´j = nr ¡ 1

2
µ2
j

µ2
j = j±21 + (n ¡ j)±2

2

°knj = PrQ(N k
n = j) for j = 0; 1; ¢ ¢ ¢ ;n and k = 1; 2

Since the European call option value is the discounted expected value of max(Sn ¡X; 0), it can be

written as in equation (16), which is a weighted average of the Black-Scholes formula values corresponding

to di®erent cumulative volatilities.

To complete the derivation, we derive the expressions for °knj. In particular, we shall develop the

equations for °1
nj in detail. For m = 1; 2; ¢ ¢ ¢ ; n,

°1
11 = p11

°1
m0 = p12p

m¡1
22 for m = 1; 2; : : : ; n

°1
m1 = p11p12p

m¡2
22 + (m ¡ 2)p2

12p21p
m¡3
22 + p12p21p

m¡2
22 for m = 2; 3; : : : ;n

To compute the remaining probabilities, we ¯rst compute the ¯rst passage probabilities to state 1.

Let F 1(k) be the probability that the ¯rst visit to state 1 occurs after k periods, given that the initial
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state is state 1. Clearly:

F 1(1) = p11

F 1(m) = p12p
m¡2
22 p21 for m = 2;3; : : : ; n

Then, for k = 2; 3; :::m, we have

°1
mk =

m¡k+1X

j=1

F 1(j)°m¡j;k¡1 for k = 2; 3; : : : ; m

Similar expressions hold for the probabilities, °2
mk for m = 1; 2::; n and k = 1; 2::; m.

Proof of Proposition 2

According to the volatility updating scheme of this bi-directional regime switching model, ¾
(K )
t+1 =

±i(K ) (for some 1 < i < K) if
s

max(
1
2
[±2i¡1(K) + ±2i (K )]¡ ¯0

¯2¾
(K )2
t

¡ ¯1

¯2
;0) · q1("t ¡ !)+ + q2("t ¡ !)¡ + (1¡ q1¡ q2)j»t j

<

s
max(

1
2
[±2
i (K) + ±2

i+1(K)]¡ ¯0

¯2¾
(K)2
t

¡ ¯1

¯2
;0):

This in turn implies that

max(
1
2
[±2i¡1(K) + ±2i (K)] ¡ ¯0

¯2¾
(K )2
t

¡ ¯1

¯2
; 0) ·

£
q1("t ¡ !)+ + q2("t ¡ !)¡ + (1 ¡ q1 ¡ q2)j»tj

¤2

< max(
1
2
[±2i (K) + ±2i+1(K)] ¡ ¯0

¯2¾
(K )2
t

¡ ¯1

¯2
; 0):

Without loss of generality, we can drop the \max" function for 1 < i < K . This is true because of two

facts. First, if the upper bound equals zero for all i < K , then ¾
(K )
t+1 = ±K(K ). Second, if the lower bound

equals zero for all i > 1, then ¾
(K)
t+1 = ±1(K). Thus,

1

2
[±2
i¡1(K ) + ±2i (K )] · ¯0 + ¯1¾

(K)2
t + ¯2¾

(K )2
t

£
q1("t ¡ !)+ + q2("t ¡ !)¡ + (1 ¡ q1 ¡ q2)j»t j

¤2

<
1

2
[±2i (K) + ±2

i+1(K)]:

or

1

2
[±2i¡1(K)¡ ±2

i (K)] · ¯0 + ¯1¾
(K )2
t + ¯2¾

(K)2
t

£
q1("t ¡ !)+ + q2("t ¡ !)¡ + (1¡ q1¡ q2)j»t j

¤2 ¡ ±2
i (K)

<
1

2
[±2
i+1(K) ¡ ±2i (K )]:

By item (ii) of the partition condition, the lower (upper) bound approaches zero uniformly from below

(above) as K tends to in¯nity. Thus, if such an i (1 < i < K) exists,

¾
(K)2
t+1 = ¯0 + ¯1¾

(K)2
t + ¯2¾

(K )2
t

£
q1("t ¡ !)+ + q2("t ¡ !)¡ + (1 ¡ q1 ¡ q2)j»t j

¤2
+ h(K)

24



where h(K) ! 0 as K ! 1. Note that the existence of such an i is equivalent to

1

2
[±21(K) + ±2

2 (K)] · ¯0 + ¯1¾
(K )2
t + ¯2¾

(K)2
t

£
q1("t ¡ !)+ + q2("t ¡ !)¡ + (1¡ q1 ¡ q2)j»t j

¤2

<
1

2
[±2
K¡1(K) + ±2K(K)]

The variance updating scheme calls for

¾
(K)2
t+1 =

8
>>>><
>>>>:

±21(K)
if ¯0 + ¯1¾

(K )2
t + ¯2¾

(K)2
t [q1("t ¡ !)+ + q2("t ¡ !)¡ + (1¡ q1¡ q2)j»t j]2

< 1
2
[±21 (K) + ±22(K)]

±2K(K)
if ¯0 + ¯1¾

(K )2
t + ¯2¾

(K)2
t [q1("t ¡ !)+ + q2("t ¡ !)¡ + (1¡ q1¡ q2)j»t j]2

¸ 1
2
[±2K¡1(K) + ±2

K (K)]

Item (i) of the partition condition ensures that ±21(K) ! 0 and ±2K(K ) ! 1 as K ! 1. Therefore,

for a ¯xed ¾
(K)
t ,

¾(K )2
t+1 ! ¯0 + ¯1¾

(K )2
t + ¯2¾

(K)2
t

£
q1("t ¡ !)+ + q2("t ¡ !)¡ + (1¡ q1 ¡ q2)j»t j

¤2
almost surely in P

because Pr obPf¯0 + ¯1¾
(K)2
t + ¯2¾

(K )2
t [q1("t ¡ !)+ + q2("t ¡ !)¡ + (1 ¡ q1 ¡ q2)j»tj]2 < 0g = 0 and

Pr obPf¯0 + ¯1¾
(K)2
t + ¯2¾

(K )2
t [q1("t ¡ !)+ + q2("t ¡ !)¡ + (1¡ q1 ¡ q2)j»t j]2 = 1g = 0. It is also clear

that S
(K)
t+1 ! St+1 almost surely in P as K ! 1 if S

(K )
t ! St and ¾

(K)2
t+1 ! ¾2

t+1 almost surely in P .

Starting from t = 0 and knowing that S
(K )
0 = S0 and ¾

(K )2
1 = ¾2

1 , we can conclude that S
(K)
1 ! S1 almost

surely in P as K ! 1. Then, ¾
(K )2
2 ! ¾2

2 and S
(K )
2 ! S2 almost surely in P as K ! 1. Repeating the

same argument all the way to time T . Since T is ¯nite, the almost sure convergence holds true over the

horizon [0; T ].

Proof of Proposition 3

First note that

½ = EQ
©
¯1 + ¯2[q1("

¤
t ¡ ! ¡ ¸)+ + q2("

¤
t ¡ ! ¡ ¸)¡ + (1 ¡ q1 ¡ q2)j»¤t ¡ vj]2jFt¡1

ª
:

Its various components can be computed using the following function:

©(c; a) =
1p
2¼

Z 1

a

exp(cz ¡ z2

2
)dz

= exp(
c2

2
)[1 ¡N (a ¡ c)]:

Speci¯cally,

EQ
©
("¤t ¡ ! ¡ ¸)+ jFt¡1

ª
= ©0(0;! + ¸)¡ (! + ¸)[1¡ N (! + ¸)]

= N 0(! + ¸)¡ (! + ¸)[1¡ N (! + ¸)]

EQ
©
("¤t ¡ ! ¡ ¸)¡jFt¡1

ª
= EQ

©
("¤t ¡ ! ¡ ¸)+ jFt¡1

ª
¡ EQ f("¤t ¡ !¡ ¸)jFt¡1g
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= N 0(! + ¸)¡ (! + ¸)[1¡ N (! + ¸)] + (! + ¸)

= N 0(! + ¸) + (! + ¸)N (! + ¸)

EQ fj»¤t ¡ vjjFt¡1g = EQ
©
(»¤t ¡ v)+jFt¡1

ª
+ EQ

©
(»¤t ¡ v)¡jFt¡1

ª

= N 0(v)¡ v[1 ¡N (v)] +N 0(v) + vN (v)

= 2N 0(v) + 2vN (v)¡ v
EQ

n£
("¤t ¡ ! ¡ ¸)+

¤2 jFt¡1

o
= ©

00
(0;! + ¸)¡ 2(! + ¸)©0(0;! + ¸) +

(! + ¸)2[1¡ N (! + ¸)]

=
£
1 + (!+ ¸)2

¤
[1¡ N (! + ¸)] ¡ (! + ¸)N 0(! + ¸)

EQ
n£

("¤t ¡ ! ¡ ¸)¡
¤2 jFt¡1

o
= EQ

n£
("¤t ¡ ! ¡ ¸)+ ¡ ("¤t ¡ !¡ ¸)

¤2 jFt¡1

o

= EQ
©
("¤t ¡ ! ¡ ¸)2jFt¡1

ª
¡ EQ

n£
("¤t ¡ !¡ ¸)+

¤2 jFt¡1

o

= 1 + (! + ¸)2 ¡
£
1 + (!+ ¸)2

¤
[1 ¡N (! + ¸)] +

(! + ¸)N 0(! + ¸)

=
£
1 + (!+ ¸)2

¤
N (! + ¸) + (!+ ¸)N 0(!+ ¸)

EQ
©
j»¤t ¡ vj2jFt¡1

ª
= EQ(»¤t

2jFt¡1)¡ 2vEQ(»¤t jFt¡1) + v2

= 1 + v2

EQ
©
("¤t ¡ !¡ ¸)+("¤t ¡ ! ¡ ¸)¡jFt¡1

ª
= 0

EQ
©
("¤t ¡ ! ¡ ¸)+ j»¤t ¡ vjjFt¡1

ª
= EQ

©
("¤t ¡ ! ¡ ¸)+ jFt¡1

ª
EQ fj»¤t ¡ vjjFt¡1g

EQ
©
("¤t ¡ ! ¡ ¸)¡j»¤t ¡ vjjFt¡1

ª
= EQ

©
("¤t ¡ ! ¡ ¸)¡jFt¡1

ª
EQ fj»¤t ¡ vjjFt¡1g

The expected volatility, conditional on F0, can be derived as:

EQ(¾2
t+1jF0) = ¯0 + EQ

(
¾ 2
t

Ã
¯1 + ¯2[q1("

¤
t ¡ ! ¡ ¸)+ + q2("

¤
t ¡ ! ¡ ¸)¡+

(1 ¡ q1 ¡ q2)j»¤t ¡ vj]2

!
jF0

)

= ¯0 + EQ

(
¾ 2
tE

Q

"Ã
¯1 + ¯2[q1("

¤
t ¡ !¡ ¸)+ + q2("

¤
t ¡ ! ¡ ¸)¡+

(1 ¡ q1 ¡ q2)j»¤t ¡ vj]2

!
jFt¡1

#
jF0

)

= ¯0 + ½EQ(¾2
t jF0)

= ¾2
1½

t +
¯0(1 ¡ ½t)

1¡ ½
:

Equivalently,

EQ (¾2
t jF0) = ¾2

1½
t¡1 +

¯0(1 ¡ ½t¡1)

1¡ ½
:

Let t go to in¯nity, we have

EQ(¾2
t ) =

¯0

1¡ ½ :
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Table 1
Sensitivity of European call option prices to transition probabilities

p22

p11 0.0 0.1 0.2 0.4 0.6 0.8 0.9 1.0
0 3.745 3.842 3.924 4.109 4.333 4.613 4.781 4.974

0.1 3.687 3.765 3.848 4.039 4.274 4.572 4.754 4.966
0.2 3.598 3.675 3.760 3.958 4.204 4.523 4.721 4.956
0.4 3.369 3.449 3.537 3.745 4.016 4.384 4.626 4.926
0.6 3.049 3.126 3.213 3.425 3.716 4.145 4.451 4.864
0.8 2.553 2.616 2.688 2.875 3.153 3.625 4.020 4.664
0.9 2.172 2.216 2.267 2.403 2.621 3.033 3.435 4.223
1.0 1.595 1.595 1.595 1.595 1.595 1.595 1.595 1.595

Table 1 shows the sensitivity of a 30-day at the money option to the parameters p11  and p22  of the
transition matrix. The values for the two volatilities are 10% and 50% per year. The interest rate is
10% per year. When p11 1=  the variance can never move into the high level state. When p22 1= ,
the variance remains in the low level state for a random amount of time before being absorbed into the
high level state.



Table 2
Convergence of European call option prices to their theoretical values

                Maturity  (days)
  m 10 30 60 90 180

1 1.867 3.641 5.463 6.943 10.553
2 1.850 3.631 5.457 6.938 10.550
3 1.852 3.631 5.456 6.937 10.549
5 1.849 3.629 5.455 6.936 10.549

10 1.846 3.627 5.454 6.935 10.548

∞ 1.845 3.625 5.452 6.934 10.547

Table 2 shows the convergence rate of the algorithm. As m increases, the discrete approximation to the normal
distribution over each trading period improves.  As an example when 3=m , then each normal distribution is
approximated by a discrete random variable taking on 712 =+m  points. The case parameters for this problem
are the same as in Table 1. As the maturity of the contract increases, the value required for m  to give very precise
results decreases. The above results are typical of convergence rates for at-the-money contracts.  Prices of out- the-
money contracts converge equally fast.



Table 3
Convergence of the lattice

# Regimes strike=95 strike=100 strike=105
10 6.060 2.976 1.185
20 6.040 2.950 1.163
50 5.986 2.878 1.105

100 6.071 2.990 1.197
200 6.050 2.961 1.173
300 6.029 2.936 1.154
400 6.037 2.946 1.161
500 6.037 2.945 1.161

1000 6.036 2.944 1.160
95% CI (6.009,6.044) (2.918,2.944) (1.143,1.159)

Table 3 shows the rate of convergence of the regime switching model prices to NGARCH option prices. The
contract priced is a 50 day European call option with  the stock price at 100. All prices are computed using the
lattice approximation described in Section 5. The parameters used are 0β = 0.000006575, 1β = 0.9, ω = 0.0. The
initial and stationary volatility are at 20%. Different regime levels satisfy the partition condition. Particularly, we
used l = 10, which results in volatility levels between 0.1% and 40% for 100 regime model and between 0% and
90% for 1000 regime model. The reported prices correspond to a volatility level artificially fixed at 20%. The last
two rows show the 95% confidence intervals for the limiting NGARCH option prices.



Table 4
Number of contracts in each moneyness and maturity category

Maturity Moneyness In-Sample Week 1 Week 2 Week 4 Total

<-0.04 205 155 194 201 755
10-45 days (-0.04,-0.01) 158 144 151 157 610
Short term (-0.01,0.01) 102 101 99 108 410
contracts (0.01,0.04) 123 123 121 123 490

>0.04 32 32 36 33 133

<-0.04 296 286 305 293 1180
46-90 days (-0.04,-0.01) 189 196 197 188 770
Mid term (-0.01,0.01) 131 131 133 117 512
contracts (0.01,0.04) 191 187 203 185 766

>0.04 167 175 182 167 691

<-0.04 266 265 269 265 1065
91-200 days (-0.04,-0.01) 157 154 147 154 612
Longer term (-0.01,0.01) 101 101 98 99 399

contracts (0.01,0.04) 149 137 141 146 573
>0.04 234 233 229 225 921

Total
Contracts

2501 2420 2505 2461 9887



Table 5
In-sample pricing residuals box plots
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Table 6a
Out-of-sample pricing residuals (1 week).

BLACK-SCHOLES ADHOC UNIDIRECTIONAL BIDIRECTIONAL

SH
O

R
T-

TE
R

M
R

ES
ID

U
A

S
M

ID
-T

ER
M

R
ES

ID
U

A
LS

LO
N

G
ER

-T
ER

M
R

ES
ID

U
A

LS

Table 6a compares the relative performance for the four models one week out-of-sample. For the Black Scholes
model, conditional on the dividend adjusted S&P 500 one week later, we reestimate the single volatility, that
minimizes the sum of squared errors, and use that value to reprice all option contracts and to establish pricing
residuals. For the uni-directional and bi-directional models we use the parameters estimated in the previous week.
To estimate the theoretical option prices, the values of both state variables, namely the adjusted index level, and
the local volatility, are required. The adjusted index value is of course known, and the local volatility is implied
out from the data. To make a fair comparison with the Ad-Hoc model, we keep all the regression coefficients fixed
except for the intercept, which is reestimated from the data. In this way, in the out-of-sample periods, all models
have one degree of freedom.
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Table 6b
Out-of-sample pricing residuals (2 weeks).

BLACK-SCHOLES ADHOC UNIDIRECTIONAL BIDIRECTIONAL
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Table 6b repeats the analysis from Table 6a two weeks after the in sample fitting was done.
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Table 7
Out-of-sample (1 week) comparison of the Bidirectional and Unidirectional models (two regimes)

Deep In In At Out Deep Out

Short -0.32491 -0.39126 -0.20100 -0.22223 -0.85833

Mid -0.57837 -0.51692 -0.68832 -0.82002 -1.58278

Long -0.11244 0.01980 -0.04208 -0.32964 -0.73472

The entries in the cells correspond to 












SSEUNI
SSEBI

_
_

ln . Negative number indicates that Bidirectional model is

better in average than Unidirectional. Note that only in 1 out of 15 categories Unidirectional performs better than
Bidirectional.



Table 8
Parameter estimates

Models Parameters
Black-Scholes
Mean
StDev

σσσσ
0.138536
0.020994

AdHoc
Mean
StDev

ββββ0
2.984539
1.534938

ββββ1
-1.526730
1.325737

ββββ2
0.130279
0.435531

ββββ3
-0.010840
0.006444

ββββ4
1.01E-05
7.65E-06

ββββ5
0.003308
0.002413

Unidirectional
Mean
StDev

ββββ0
6.74559E-07
4.14482E-07

ββββ1
0.77467

0.060883

ββββ2
0.223375
0.060341

ωωωω
0.834072
0.521808

σσσσ1
0.120833
0.037021

Bidirectional
Mean
StDev

ββββ0
3.77E-06
4.31E-06

ββββ1
0.403558
0.241761

ββββ2
0.580733
0.238937

q
0.402407
0.074785

ωωωω
0.926783
0.121275

σσσσ1
0.093300
0.049935



Figure 1

Figure 1 illustrates several risk-neutral density functions obtained for the stock price over a three-month horizon.
The parameters that are fixed in this analysis are 00001.00 =β , 8.01 =β , 0=ω , 0=v . Five different scenarios
are considered: (1) 5.021 == qq , λ  =0, (2) 5.021 == qq , λ =1, (3) 3/11 =q , 3/22 =q , λ  =0, (4)

021 == qq , λ  =0, and (5) 3/21 =q , 3/12 =q , λ  =0. In all five cases, the stationary risk-neutral standard
deviation (annualized) equals 20% because ρ  is maintained at 0.90875.
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