Mathematical Thinking Process

The progression you have just seen from an ordered list of two numbers to an ordered list of n numbers is an example of a mathematical technique called **generalization**. Generalization is the process of creating, from an original concept (problem, de⁻nition, theorem, and so on), a more general concept (problem, de⁻nition, theorem, and so on) that includes not only the original one, but many other new ones as well.

Each of the original concepts that gives rise to the generalization is called a **special case**. In the foregoing examples, the ordered lists

(73; 175) and (73; 175; 25)

are special cases of an n-vector $\mathbf{u} = (u_1; \ldots; u_n)$. The ⁻rst ordered list, (73, 175), is a special case in which n = 2, $u_1 = 73$, and $u_2 = 175$, so $\mathbf{u} = (73; 175) \ 2 \ R^2$. The second ordered list, (73, 175, 25), is a special case in which n = 3, $u_1 = 73$, $u_2 = 175$, and $u_3 = 25$, so $\mathbf{u} = (73; 175; 25) \ 2 \ R^3$. Observe that each of the special cases is obtained from the generalization by an appropriate substitution of values. Each special case of an n-vector $\mathbf{u} = (u_1; \ldots; u_n)$ is obtained by substituting speci⁻c values for n and $u_1; \ldots; u_n$.